[1] Huang H J, Lu J B, Li Q, et al. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species[J]. Journal of Proteomics, 2018, 172:25-35. [2] Cao T T, Lü J, Lou Y G, et al. Feeding-induced interactions between two rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera:Delphacidae):effects on feeding and honeydew excretion[J]. Environmental Entomology, 2013, 42(6):1281-1291. [3] Huang H J, Liu C W, Zhou X, et al. A mitochondrial membrane protein is a target for rice ragged stunt virus in its insect vector[J]. Virus Research, 2017, 229:48-56. [4] Li S, Zhang T, Zhu Y, et al. Co-infection of two reoviruses increases both viruses accumulation in rice by up-regulating of viroplasm components and movement proteins bilaterally and RNA silencing suppressor unilaterally[J]. Virolgy Journal, 2017, 14(1):150. [5] Liao X, Xu P F, Gong P P, et al. Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China[J]. Insect Science, 2021, 28(1):115-126. [6] Zhang X L, Mao K K, Liao X, et al. Inheritance mode and realized heritability of resistance to nitenpyram in the brown planthoper, Nilaparvata lugens Stål (Hemiptera:Delphacidae)[J]. Crop Protection, 2021,146:105660. [7] Khan M M, Kaleem-Ullah R M, Siddiqui J A, et al. Insecticide resistance and detoxification enzymes activity in Nilaparvata lugens Stål against neonicotinoids[J]. The Journal of Agricultural Science, 2020, 12(5):24-36. [8] Zhan L, Li J, Wei B. Autophagy in endometriosis:friend or foe?[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):60-63. [9] Matsuura A, Tsukada M, Wada Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2):245-250. [10] Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy[J]. Autophagy, 2015, 11(1):28-45. [11] Scott R C, Schuldiner O, Neufeld T P. Role and regulation of starvation-induced autophagy in the Drosophila fat body[J]. Development Cell, 2004, 7(2):167-178. [12] Park M S,Takeda M. Cloning of PaAtg8 and roles of autophagy in adaptation to starvation with respect to the fat body and midgut of the Americana cockroach, Periplaneta americana[J]. Cell and Tissue Research, 2014, 356(2):405-416. [13] Li Y B, Yang T, Wang J X, et al. The steroid hormone 20-Hydroxyecdysone regulates the conjugation of autophagy-related proteins 12 and 5 in a concentration and time-dependent manner to promote insect midgut programmed cell death[J]. Frontiers in Endocrinol (Lausanne), 2018, 9:28. [14] Montali A, Romanelli D, Cappellozza S, et al. Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori[J]. Arthropod Structure and Developmentk, 2017, 46(4):518-528. [15] Denton D, Shravage B, Simin R, et al. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila[J]. Current Biology, 2009, 19(20):1741-1746. [16] Edosa T T, Jo Y H, Keshavarz M, et al. TmAtg6 plays an important role in anti-microbial defense against Listeria monocytogenes in the mealworm, Tenebrio molitor[J]. International Journal of Molecular Sciences, 2020, 21(4):1232. [17] Tindwa H, Jo Y H, Patnaik B B, et al. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes[J]. Archives of Insect Biochemistry and Physiology, 2015, 88(1):85-99. [18] Cabrera S, Fernández A F, Mariño G, et al. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis[J]. Autophagy, 2013, 9(8):1188-1200. [19] Pérez-Pérez M E, Zaffagnini M, Marchand C H, et al. The yeast autophagy protease Atg4 is regulated by thioredoxin[J]. Autophagy, 2014, 10(11):1953-1964. [20] Kirisako T, Ichimura Y, Okada H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. The Journal of Cell Biology, 2000, 151(2):263-276. [21] Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation[J]. Nature, 2000, 408(6811):488-492. [22] Jo Y H, Lee J H, Patnaik B B, et al. Autophagy in Tenebrio molitor immunity:conserved antimicrobial functions in insect defenses[J]. Frontiers in Immunology, 2021, 12:667664. [23] Zhou Y Y, Wang Z K, Huang Y J, et al. Membrane dynamics of ATG4B and LC3 in autophagosome formation[J]. Journal of Molecular Cell Biology, 2021,13(12):853-863. [24] Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. The Embo Journal, 2019, 38(10):e101812. [25] Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. The Embo Journal, 2007, 26(7):1749-1760. [26] Yuan M, Lu Y, Zhu X, et al. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera:Delphacidae) using reverse-transcription quantitative PCR[J]. PLoS ONE, 2014, 9(1):e86503. [27] Huang H J, Bao Y Y, Lao S H, et al. Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant[J]. Scientific Reports, 2015, 5:11413. [28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408. [29] Ziegler R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta[J]. Journal of Comparative Physiology B, 1991, 161(2):125-131. [30] Duan Z B, Chen Y X, Huang W, et al. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii[J]. Autophagy, 2013, 9(4):538-549. [31] Galluzzi L, Pietrocola F, Levine B, et al. Metabolic control of autophagy[J]. Cell, 2014, 159(6):1263-1276. [32] Yu Z Q, Ni T, Hong B, et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy[J]. Autophagy, 2012, 8(6):883-892. [33] Kulikov A V, Luchkina E A, Gogvadze V, et al. Mitophagy:Link to cancer development and therapy[J]. Biochemical and Biophysical Research Communications, 2017, 482(3):432-439. [34] Law J H, Wells M A. Insects as biochemical models[J]. Journal of Biological Chemistry, 1989, 264(28):16335-16338. [35] Gäde G. Regulation of intermediary metabolism and water balance of insects by neuropeptides[J]. Annual Reviews in Entomology, 2004, 49:93-113. [36] Murphy D J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms[J]. Progress in Lipid Research, 2001, 40(5):325-438. [37] Bharucha K N. The epicurean fly:using Drosophila melanogaster to study metabolism[J]. Pediatric Research, 2009, 65(2):132-137. [38] Kühnlein R P. Drosophila as a lipotoxicity model organism——more than a promise?[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids, 2010, 1801(3):215-221. [39] Kühnlein R P. Thematic review series:lipid droplet synthesis and metabolism:from yeast to man. Lipid droplet-based storage fat metabolism in Drosophila[J]. Journal Lipid Research, 2012, 53(8):1430-1436. [40] Park D S, Oh H W, Bae K S, et al. Screening of bacteria producing lipase from insect gut:isolation and characterization of a strain, Burkholderia sp. HY-10 producing lipase[J]. Korean Journal of Applied Entomology, 2007, 46(1):131-139. [41] Noda H. Histological and histochemical observation of intracellular yeastlike symbiotes in the fat body of the smaller brown planthopper, Laodelphax striatellus (Homoptera:Delphacidae)[J]. Applied Entomology and Zoology, 1977, 12:134-141. [42] Xue J, Zhou X, Zhang C X, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation[J]. Genome Biology, 2014, 15(12):521. [43] Chang X N, Hui W, Xiao N W, et al. Effects of elevated CO2 and transgenic Bt rice on yeast-like endosymbiote and its host brown planthopper[J]. Journal of Applied Entomology, 2011, 135(5):333-342. [44] Shentu X P, Li D T, Xu J F, et al. Effects of fungicides on the yeast-like symbiotes and their host, Nilaparvata lugens Stål (Hemiptera:Delphacidae)[J]. Pesticide Biochemistry and Physiology, 2016, 128:16-21. [45] Lee Y H, Hou R F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stål[J]. Journal of Insect Physiology, 1987, 33(11):851-860. [46] Cheng D J, Hou R F. Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stål (Homoptera, Delphacidae)[J]. Tissue Cell, 2001, 33(3):273-279. |