[1] Jiang H, Kanost M R. The clip-domain family of serine proteinases in arthropods[J]. Insect Biochemistry and Molecular Biology, 2000, 30(2):95-105. [2] Veillard F, Troxler L, Reichhart J M. Drosophila melanogaster clip-domain serine proteases:Structure, function and regulation[J]. Biochimie, 2016, 122:255-269. [3] Kanost M R, Jiang H. Clip-domain serine proteases as immune factors in insect hemolymph[J]. Current Opinion in Insect Science, 2015, 11:47-55. [4] Chu Y, Liu Y, Shen D, et al. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana[J]. Journal of Iinvertebrate Pathology, 2015, 128:64-72. [5] Yang W J, Chen C X, Yan Y, et al. Clip-domain serine protease gene (LsCLIP3) is essential for larval-pupal molting and immunity in Lasioderma serricorne[J]. Frontiers in Physiology, 2020, 10:1631. [6] 唐琦,周倩,邱立鹏,等.丝氨酸蛋白酶在昆虫先天免疫中的功能和作用机制研究进展[J].蚕业科学, 2017, 43(3):502-508. [7] Muta T, Hashimoto R, Miyata T, et al. Proclotting enzyme from horseshoe crab hemocytes. cDNA cloning, disulfide locations, and subcellular localization[J]. Journal of Biological Chemistry, 1990, 265(36):22426-22433. [8] Lin H, Xia X, Yu L, et al. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella(L.)[J]. BMC Genomics, 2015, 16:1054. [9] Jang I H, Nam H J, Lee W J. CLIP-domain serine proteases in Drosophila innate immunity[J]. BMB Reports, 2008, 41(2):102-107. [10] Mwangi S, Murungi E, Jonas M, et al. Evolutionary genomics of Glossina morsitans immune-related CLIP domain serine proteases and serine protease inhibitors[J]. Infection Genetics and Evolution, 2011, 11(4):740-745. [11] Cao X, Gulati M, Jiang H. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae[J]. Insect Biochemistry and Molecular Biology, 2017, 88:48-62. [12] Liu H, Heng J, Wang L, et al. Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori[J]. Developmental and Comparative Immunology, 2020, 105:103584. [13] Cao X, He Y, Hu Y, et al. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 2015, 62:51-63. [14] Cao X, Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects[J]. Insect Biochemistry and Molecular Biology, 2018, 103:53-69. [15] Zou Z, Lopez D L, Kanost M R, et al. Comparative analysis of serine protease-related genes in the honey bee genome:possible involvement in embryonic development and innate immunity[J]. Insect Molecular Biology, 2006, 15(5):603-614. [16] Chen B, Kayukawa T, Jiang H, et al. DaTrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, Delia antiqua[J]. Gene, 2005, 347(1):115-123. [17] El Moussawi L, Nakhleh J, Kamareddine L, et al. The mosquito melanization response requires hierarchical activation of non-catalytic clip domain serine protease homologs[J]. PLoS Pathogens, 2019, 15(11):e1008194. [18] Zhang X, Li M, El Moussawi L, et al. CLIPB10 is a terminal protease in the regulatory network that controls melanization in the African malaria mosquito Anopheles gambiae[J]. Frontiers in Cellular and Infection Microbiology, 2021, 10:585986. [19] Liu H W, Wang L L, Meng Z, et al. A clip domain serine protease involved in moulting in the silkworm, Bombyx mori:cloning, characterization, expression patterns and functional analysis[J]. Insect Molecular Biology, 2017, 26(5):507-521. [20] Sousa G L, Bishnoi R, Baxter R H G, et al. The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae[J]. PLoS Pathogens, 2020, 16(10):e1008985. [21] 赵倩倩,于洁,张吉良,等.西花蓟马clip丝氨酸蛋白酶基因的鉴定与表达分析[J].中国生物防治学报, 2017, 33(1):63-69. [22] 于洁,王登杰,张林雅,等.参与烟粉虱免疫反应的clip丝氨酸蛋白酶基因分析[J].植物保护学报, 2016, 43(1):55-61. [23] Ma L, Chen F, Wang W, et al. Identification of two clip domain serine proteases involved in the pea aphid's defense against bacterial and fungal infection[J]. Insect Science, 2020, 27(4):735-744. [24] 陈春旭,许抗抗,杨洪,等.烟草甲clip丝氨酸蛋白酶基因的克隆及其对外源激素和免疫胁迫的表达响应[J].昆虫学报, 2019, 62(5):535-546. [25] 吕进,祝增荣,娄永根,等.稻飞虱灾变和治理研究透析[J].应用昆虫学报, 2013, 50(3):565-574. [26] Xue J, Zhou X, Zhang C X, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation[J]. Genome Biology, 2014, 15:521. [27] Kumar S, Stecher G, Li M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549. [28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4):402-408. [29] Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research[J]. Insect Science, 2013, 20(2):254-260. [30] Bao Y Y, Qu L Y, Zhao D, et al. The genome-and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens[J]. BMC Genomics, 2013, 14:160. [31] Bao Y Y, Qin X, Yu B, et al. Genomic insights into the serine protease gene family and expression profile analysis in the planthopper, Nilaparvata lugens[J]. BMC Genomics, 2014, 15(1):507. [32] Wang L, Yang L, Zhou X S, et al. A clip domain serine protease stimulates melanization activation and expression of antimicrobial peptides in the chinese oak silkworm, Antheraea pernyi[J]. Journal of Asia-Pacific Entomology, 2018, 21(3):864-871. [33] Lee K Y, Zhang R, Kim M S, et al. A zymogen form of masquerade-like serine proteinase homologue is cleaved during pro-phenoloxidase activation by Ca2+ in coleopteran and Tenebrio molitor larvae[J]. European Journal of Biochemistry, 2002, 269(17):4375-4383. [34] Zhang H, Tang B, Lin Y, et al. Identification of three prophenoloxidase-activating factors (PPAFs) from an invasive beetle Octodonta nipae Maulik (Coleoptera:Chrysomelidae) and their roles in the prophenoloxidase activation[J]. Archives of Insect Biochemistry and Physiology, 2017, 96(4):e21425. [35] An C, Ishibashi J, Ragan E J, et al. Functions of Manduca sexta hemolymph proteinases HP6 and HP8 in two innate immune pathways[J]. Journal of Biological Chemistry, 2009, 284(29):19716-19726. [36] Jang I H, Chosa N, Kim S H, et al. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity[J]. Developmental Cell, 2006, 10(1):45-55. [37] Yang L, Lin Z, Fang Q, et al. The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum[J]. Developmental and Comparative Immunology, 2017, 77:56-68. [38] Liu S, Jaouannet M, Dempsey D A, et al. RNA-based technologies for insect control in plant production[J]. Biotechnology Advances, 2020, 39:10746. [39] Wu J M, Zheng R E, Zhang R J, et al. A clip domain serine protease involved in egg production in Nilaparvata lugens:Expression patterns and RNA interference[J]. Insects, 2019, 10(11):378. [40] Zheng R E, Ji J, Wu J, et al. PCE3 plays a role in the reproduction of male Nilaparvata lugens[J]. Insects, 2021, 12(2):114. [41] Jin S F, Feng M G, Ying S H, et al. Evaluation of alternative rice planthopper control by the combined action of oil-formulated Metarhizium anisopliae and low-rate buprofezin[J]. Pest Management Science, 2011, 67:36-43. [42] Tang J F, Liu X Y, Ding Y C, et al. Evaluation of Metarhizium anisopliae for rice planthopper control and its synergy with selected insecticides[J]. Crop Protection, 2019, 121:132-138. |