Chinese Journal of Biological Control ›› 2023, Vol. 39 ›› Issue (1): 98-110.DOI: 10.16409/j.cnki.2095-039x.2022.03.013
• RESEARCH REPORTS • Previous Articles Next Articles
GE Xinzhu, LI Yan, GU Shan, WANG Shasha, CHAO Lei, CAI Wenjie, LI Hangyu, FANG Yinjie, WANG Shigui, TANG Bin
Received:
2021-12-17
Online:
2023-02-08
Published:
2023-02-21
CLC Number:
GE Xinzhu, LI Yan, GU Shan, WANG Shasha, CHAO Lei, CAI Wenjie, LI Hangyu, FANG Yinjie, WANG Shigui, TANG Bin. Effects of GLUT Gene Expression on Energy Metabolism in Harmonia axyridis[J]. Chinese Journal of Biological Control, 2023, 39(1): 98-110.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2022.03.013
[1] Wang S, Tan X L, Michaud J P, et al. Sexual selection drives the evolution of limb regeneration in Harmonia axyridis (Coleoptera:Coccinellidae)[J]. Bulletin of Entomological Research, 2015, 105(2):245-252. [2] Feng Y, Li Y D, Liu Z G, et al. Behavioural patterns and functional responses of a generalist predator revealed using automated video tracking[J]. Pest Management Science, 2019, 75(6):1517-1526. [3] Durieux D, Fassotte B, Deneubourg J L, et al. Aggregation behavior of Harmonia axyridis under non-wintering conditions[J]. Insect Science, 2015, 22(5):670-678. [4] Wang S, Zhang R Z, Zhang F. Research progress on biology and ecology of Harmonia axyridis Pallas (Coleoptera:Coccinellidae)[J]. Journal of Applied Ecology, 2007, 18:2117-2126. [5] Pan M Z, Liu T X. Suitability of three aphid species for Aphidius gifuensis (Hymenoptera:Braconidae):Parasitoid performance varies with hosts of origin[J]. Biological Control, 2014, 69:90-96. [6] Cottrell T E. Trap height affects capture of lady beetles (Coleoptera:Coccinellidae) in pecan orchards[J]. Environment Entomology, 2017, 46(2):343-352. [7] Michaud J P. Responses of two ladybeetles to eight fungicides used in Florida citrus:implications for biological control[J]. Journal of Insect Science, 2001, 1:6. [8] 程英. 七星瓢虫人工饲料的优化和评价[D]. 贵阳:贵州大学, 2018. [9] Dimond J, Lea A, Brooks R, et al. A preliminary note on some nutritional requirements for reproduction in female Aedes aegypti[J]. Ohio Journal of Science, 1955, 55:209-211. [10] Kogan P H. Substitute blood meal for investigating and maintaining Aedes aegypti (Diptera:Culicidae)[J]. Journal of Medical Entomology, 1990, 27:709-712. [11] Pitts R J. A blood-free protein meal supporting oogenesis in the Asian tiger mosquito, Aedes albopictus (Skuse)[J]. Journal of Insect Physiology, 2014, 64:1-6. [12] Gonzales K K, Tsujimoto H, Hansen I A. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti[J]. Peer J, 2015, 3:e938. [13] Pinto J R L, Torres A F, Truzi C C, et al. Artificial corn-based diet for rearing Spodoptera frugiperda (Lepidoptera:Noctuidae)[J]. Journal of Insect Science, 2019, 19(4):1-8. [14] Nagamine K, Hojoh K, Nagata S, et al. Rearing Theretra oldenlandiae (Lepidoptera:Sphingidae) larvae on an artificial diet[J]. Journal of Insect Science, 2019, 19(3):10. [15] 程英, 郅军锐, 周宇航, 等. 非昆虫源人工饲料饲养的七星瓢虫对豆蚜的捕食功能[J]. 中国生物防治学报, 2018, 34(2):209-213. [16] 孙小莉. 利用紫藤蚜食料的异色瓢虫生物学及人工繁育技术研究[D]. 济南:山东农业大学, 2019. [17] 陈江峰, 赵继伟, 肖慧昌, 等. 人工饲料添加不同凝固剂对异色瓢虫生长发育的影响[J]. 甘肃农业科技, 2020(1):14-18. [18] Li Y, Wang S, Liu Y, et al. The effect of different dietary sugars on the development and fecundity of Harmonia axyridis[J]. Frontiers in physiology, 2020, 11:574851. [19] 曾凡荣, 陈红印. 天敌昆虫饲养系统工程[M]. 北京:中国农业科学技术出版社, 2019, 138-162. [20] 李辰新, 梁超, 刘廷辉, 等. 3种饲料对异色瓢虫生长发育的影响[J]. 河北林果研究, 2017, 32(2):169-173. [21] Sighinolfi L, Febvay G, Dindo M L, et al. Biological and biochemical characteristics for quality control of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae) reared on a liver-based diet[J]. Archives of Insect Biochemistry and Physiology, 2008, 68(1):26-39. [22] 曾斌. 异色瓢虫人工大量繁殖与田间释放技术研究[D]. 武汉:华中农业大学, 2013. [23] Kawamura N, Sahara K, Fugo H. Glucose and ecdysteroid increase apyrene sperm production in in vitro cultivation of spermatocysts of Bombyx mori[J]. Journal of Insect Physiology, 2003, 49(1):25-30. [24] Cheng D, Chen L, Yi C, et al. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel)[J]. Scientific Reports, 2014, 4:7489. [25] Santos R, Mariano A C, Rosas-Oliveira R, et al. Carbohydrate accumulation and utilization by oocytes of Rhodnius prolixus[J]. Archives of Insect Biochemistry and Physiology, 2008, 67(2):55-62. [26] Wang W, Lu S L, Liu W X, et al. Effects of five naturally occurring sugars on the longevity,oogenesis, and nutrient accumulation pattern in adult females of the synovigenic parasitoid Neochrysocharis formosa (Hymenoptera:Eulophidae)[J]. Neotropical Entomology, 2014, 43(6):564-573. [27] Tian J C, Wang G W, Romeis J, et al. Different performance of two Trichogramma (Hymenoptera:Trichogrammatidae) species feeding on sugars[J]. Environmental Entomology, 2016, 45(5):1316-1321. [28] Lin X, Xu Y, Jiang J, et al. Host quality induces phenotypic plasticity in a wing polyphonic insect[J]. Proceedings of the National Academy of Sciences USA, 2018, 115(29):7563-7568. [29] 程涛, 姚远, 张生, 等. 葡萄糖转运体4活性抑制对神经母细胞瘤影响[J]. 兰州大学学报(医学版), 2021, 47(4):35-40. [30] 张楠, 赵颖. 葡萄糖转运蛋白GLUT4表达的调节机制[J]. 中国生物化学与分子生物学报, 2016, 32(3):237-244. [31] Jasso-Villagomez E I, Garcia-Lorenzana M, Almanza-Perez J C, et al. Beetle (Ulomoides dermestoides) fat improves diabetes:effect on liver and pancreatic architecture and on PPARγ expression[J]. Brazilian Journal of Medical & Biological Research, 2018, 51(6):e7238. [32] Hertenstein H, McMullen E, Weiler A, et al. Starvation-induced regulation of carbohydrate transport at the blood-brain barrier is TGF-β-signaling dependent[J]. Elife, 2021, 10:e62503. [33] Kumagai A K, Kang Y S, Boado R J, et al. Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia[J]. Diabetes, 1995, 44(12):1399-404. [34] Crivat G, Lizunov V A, Li C R, et al. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster[J]. PLoS ONE, 2013, 8(11):e77953. [35] Wang M, Wang J. Glucose transporter GLUT1 influences Plasmodium berghei infection in Anopheles stephensi[J]. Parasit Vectors, 2020, 13(1):285. [36] Van Lenteren J C. The state of commercial augmentative biological control:plenty of natural enemies, but a frustrating lack of uptake[J]. BioControl, 2012, 57(1):1-20. [37] Tang B, Wang S, Wang S G, et al. Invertebrate trehalose-6-phosphate synthase gene:genetic architecture, biochemistry, physiological function, and potential applications[J]. Frontiers in Physiology, 2018, 9:30. [38] Li Y, Wang S S, Wang S, et al. Involvement of glucose transporter 4 in ovarian development and reproductive maturation of Harmonia,axyridis (Coleoptera:Coccinellidae)[J]. Insect Science, 2022, 29(3):691-703. [39] Heilig C W, Deb D K, Abdul A, et al. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy[J]. American Journal of Nephrology. 2013, 38(1):39-49. [40] Kitaoka S, Morielli A D, Zhao F Q. FGT-1-mediated glucose uptake is defective in insulin/IGF-like signaling mutants in Caenorhabditis elegans[J]. FEBS Open Bio, 2016, 6(6):576-585. [41] Li Y, Wang S, Liu Y, et al. The effect of different dietary sugars on the development and fecundity of Harmonia axyridis[J]. Frontiers in Physiology, 2020, 11:574851. [42] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J]. Methods, 2001, 25(4):402-408. [43] Zhang L, Qiu L Y, Yang H L, et al. Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens, by knockdown of TRE gene[J]. Frontiers in Physiology, 2017, 8:750. [44] Koch R L, Venette R C, Hutchison W D. Invasions by Harmonia axyridis (Pallas) (Coleoptera:Coccinellidae) in the Western Hemisphere:implications for South America[J]. Neotropical Entomology, 2006, 35(4):421-34. [45] Wong S C, Oksanen A, Mattila A L, et al. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly[J]. Journal of Insect Physiology, 2016, 85:23-31. [46] Musselman L P, Fink J L, Narzinski K, et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila[J]. Disease Models & Mechanisms, 2011, 4(6):842-849. [47] Hahn D A, Denlinger D L. Energetics of insect diapause[J]. Annual Review of Entomology, 2011, 56:103-21. [48] King B, Li S, Liu C, et al. Suppression of glycogen synthase expression reduces glycogen and lipid storage during mosquito overwintering diapause[J]. Journal of Insect Physiology, 2020, 120:103971. [49] Yoshida M, Matsuda H, Kubo H, et al. Molecular characterization of Tps1 and Treh genes in Drosophila and their role in body water homeostasis[J]. Scientific Reports, 2016, 6:30582. [50] 靳婷婷, 戈峰, 吴杰. 亚洲玉米螟幼虫膜结合海藻糖酶基因RNAi效应[J]. 中国生物防治学报, 2020, 36(3):452-457. [51] Shukla E, Thorat L J, Nath B B, et al. Insect trehalase:physiological significance and potential applications[J]. Glycobiology, 2015, 25(4):357-367. [52] Lee D, Son H G, Jung Y, et al. The role of dietary carbohydrates in organismal aging[J]. Cellular and Molecular Life Sciences, 2017, 74(10):1793-1803. [53] Alcántar-Fernández J, González-Maciel A, Reynoso-Robles R, et al. High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans[J]. PLoS ONE, 2019, 14(12):e0226652. [54] Talal S, Cease A J, Youngblood J P, et al. Plant carbohydrate content limits performance and lipid accumulation of an outbreaking herbivore[J]. Proceedings Biological Sciences, 2020, 287(1940):20202500. [55] 郭义, 王曼姿, 张长华, 等. 几种糖类物质对蠋蝽取食行为选择和繁殖力的影响[J]. 中国生物防治学报, 2017, 33(3):331-337. [56] Van Handel E. Do trehalose and trehalase function in renal glucose transport?[J]. Science, 1969, 163(3871):1075-1076. [57] Elbein A D. New insights on trehalose:a multifunctional molecule[J]. Glycobiology, 2003, 13:17R-27R. [58] Thompson S, Borchardt D, Wang L. Dietary nutrient levels regulate protein and carbohydrate intake, gluconeogenic/glycolytic flux and blood trehalose level in the insect Manduca sexta L[J]. Journal of Comparative Physiology B, 2003, 173:149-163. [59] Ugrankar R, Berglund E, Akdemir F, et al. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism[J]. Nature Communications, 2015, 6:7102. [60] Wang G, Zhou J J, Li Y, et al. Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris[J]. Scientific Reports, 2021, 11(1):15864. [61] Matsuda H, Yamada T, Yoshida M, et al. Flies without trehalose[J]. Journal of Biological Chemistry, 2015, 290(2):1244-1255. [62] Zinke I, Schütz C S, Katzenberger J D, et al. Nutrient control of gene expression in Drosophila:microarray analysis of starvation and sugar-dependent response[J]. EMBO Journal, 2002, 21(22):6162-73. [63] Chng W A, Sleiman M S B, Schüpfer F, et al. Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression[J]. Cell Reports, 2014, 9(1):336-348. [64] Mattila J, Hietakangas V. Regulation of carbohydrate energy metabolism in Drosophila melanogaster[J]. Genetics, 2017, 207(4):1231-1253. [65] Harmon A W, Paul D S, Patel Y M. MEK inhibitors impair insulin-stimulated glucose uptake in 3T3-L1 adipocytes[J]. American Journal of Physiology Endocrinology and Metabolism, 2004, 287(4):E758-766. [66] Fraga A, Ribeiro L, Lobato M, et al. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum[J]. PLoS ONE, 2013, 8(6):e65125. [67] Volkenhoff A, Hirrlinger J, Kappel J M, et al. Live imaging using a FRET glucose sensor reveals glucose delivery to all cell types in the Drosophila brain[J]. Journal of Insect Physiology, 2018, 106(Pt1):55-64. [68] Kitaoka S, Morielli A D, Zhao F Q. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells[J]. PLoS ONE, 2013, 8(6):e68475. [69] Feng Y, Williams B G, Koumanov F, et al. FGT-1 is the major glucose transporter in C. elegans and is central to aging pathways[J]. The Biochemical Journal, 2013, 456(2):219-229. [70] Kitaoka S, Morielli A D, Zhao F Q. FGT-1-mediated glucose uptake is defective in insulin/IGF-like signaling mutants in Caenorhabditis elegans[J]. FEBS Open Bio, 2016, 6(6):576-585. |
[1] | CUI Xiaoning, XI Boxin, ZHANG Bohong, SUN Yuanxing, HU Guixin, LIU Yanjun, HAO Yanan. Predatory Functional Response and Predation Preference of Ladybeetle Harmonia axyridis to Acyrthosiphon pisum and Odontothrips loti on Alfalfa [J]. Chinese Journal of Biological Control, 2023, 39(1): 38-45. |
[2] | ZHANG Liang, YANG Hongjia, LI Ze, ZHANG Chunyu, HU Yushuo, FAN Dong. Cloning of CYP9A134 Gene and Its Detoxification Function in Mythimna separata [J]. Chinese Journal of Biological Control, 2023, 39(1): 130-140. |
[3] | WU Wei, CHENG Yiqing, WANG Zhengliang, YU Xiaoping. Cloning and Function Analysis of a Clip-domain Serine Protease Gene NlSCP4 in the Brown Planthopper,Nilaparvata lugens(Hemiptera:Delphacidae) [J]. Chinese Journal of Biological Control, 2022, 38(5): 1202-1212. |
[4] | MO Qin, JIANG Wei, CHEN Yifan, LÜ Beibei. Advances in the Development of Spray-Induced Gene Silencing for the Management of Plant Pathogenic Fungi [J]. Chinese Journal of Biological Control, 2022, 38(5): 1316-1324. |
[5] | XIAO Da, TIAN Renbin, CHEN Xu, WU Mengmeng, XU Qingxuan, ZHANG Junming, ZANG Liansheng, WANG Su. Research Progress on the Diversity of Color Pattern Subtypes in Harmonia axyridis [J]. Chinese Journal of Biological Control, 2022, 38(4): 1009-1019. |
[6] | YANG Guiqun, FAN Wei, ZHANG Qian, LI Mao, JIANG Zhengxiong, DUAN Pan, HU Changxiong, CHEN Guohua, ZHANG Xiaoming. Predatory Function of Harmonia axyridis and Propylea japonica Larvae to Young Larvae of Tuta absoluta [J]. Chinese Journal of Biological Control, 2022, 38(4): 959-966. |
[7] | GAO Liwen, CHEN Shiguo, ZHANG Yu, QIANG Sheng. The Development of Biological Pesticides Based on RNA Interference [J]. Chinese Journal of Biological Control, 2022, 38(3): 700-715. |
[8] | WANG Xiaodi, JI Shunxia, SHEN Xiaona, LIU Wanxue, WAN Fanghao, ZHANG Guifen, Lü Zhichuang. Research and Application of Nanoparticle-mediated RNAi Technology in Pest Control [J]. Chinese Journal of Biological Control, 2021, 37(6): 1298-1312. |
[9] | TAI Jinrui, LIU Siqi, GAO Guizhen. Predatory Functional Response of Different Stages of Harmonia axyridis Pallas on Panaphis juglandis Goeze [J]. Chinese Journal of Biological Control, 2021, 37(6): 1338-1343. |
[10] | LI Ze, YANG Hongjia, ZHANG Liang, ZHANG Chunyu, HU Yushuo, FAN Dong. Cloning and Biological Functional Analysis of Juvenile Hormone Epoxide Hydrolase Gene MsJHEH2 from Mythimna separata [J]. Chinese Journal of Biological Control, 2021, 37(5): 970-981. |
[11] | YANG Hongjia, WANG Xiaoyun, JIN Myong Cha, FAN Dong. Studies on the Expression and Silencing Efficiency of Aphis glycines Trehalose-6-Phosphate Synthase at Different Temperatures [J]. Chinese Journal of Biological Control, 2020, 36(6): 920-928. |
[12] | KONG Lin, LI Yuyan, WANG Mengqing, LIU Chenxi, MAO Jianjun, CHEN Hongyin, ZHANG Lisheng. Predation of Hippodamia variegata and Harmonia axyridis to Young Larvae of Spodoptera frugiperda [J]. Chinese Journal Of Biological Control, 2019, 35(5): 709-714. |
[13] | LIAO Ping, MIAO Shaoming, XU Ruonan, LIU Chenxi, CHEN Guokang, WANG Mengqing, MAO Jianjun, ZHANG Lisheng, CHEN Hongyin. Evaluation of a New Liquid Artificial Diet of Arma chinensis Fallou (Hemiptera:Pentatomidae) [J]. journal1, 2019, 35(1): 9-14. |
[14] | SUN Li, CHEN Xia, ZHANG Yanxuan, ZHAO Lingling, LIN Jianzhen. Effect of Breeding Density on Adult Harvest and Fecundity of Harmonia axyridis Pallas [J]. journal1, 2019, 35(1): 15-19. |
[15] | SHA Xianlan, SHEN Xinlan, Shu Xiaohan, MENG Ling, LI Baoping. Effects of Larval Consumption of Diets of Aphids and Non-sibling Conspecific Eggs on Adult Predation Behaviors in Harmonia axyridis (Coleoptera:Coccinellidae) [J]. journal1, 2018, 34(1): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||