Chinese Journal of Biological Control ›› 2022, Vol. 38 ›› Issue (1): 230-241.DOI: 10.16409/j.cnki.2095-039x.2022.02.003
• RESEARCH REPORTS • Previous Articles Next Articles
WU Lijuan, HAN Cong, WANG Huimei, WANG Lei, E Zhiguo
Received:
2021-09-10
Online:
2022-02-08
Published:
2022-03-01
CLC Number:
WU Lijuan, HAN Cong, WANG Huimei, WANG Lei, E Zhiguo. Study on the Resistance Mechanism of Burkholderia sp. JP2-270 against Rice Sheath Blight[J]. Chinese Journal of Biological Control, 2022, 38(1): 230-241.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2022.02.003
[1] 俞寅达, 孙婳珺, 夏志辉. 水稻纹枯病生物防控研究进展[J]. 分子植物种, 2019, 17(2):600-605. [2] Padaria J C, Tarafdar A, Raipuria R, et al. Identification of phenazine-1-carboxylic acid gene (phcCD) from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani[J]. Journal of Basic Microbiology, 2016, 56:999-1008. [3] 王国平, 鲁书玲, 郑必强, 等. 内生真菌紫杉木酶ZJUF0986菌株及其活性代谢产物防治水[J]. 中国生物防治, 2009, 25(1):30-34. [4] Maimone N M, de Oliveira L F P, Santos S N, et al. Elicitation of Streptomyces lunalinharesii secondary metabolism through co-cultivation with Rhizoctonia solani[J]. Microbiology Research, 2021, 251:126836. [5] 任小平, 谢关林, 王笑. 铜绿假单胞菌ZJ1999对水稻纹枯病的防治及其在水稻上的定殖[J]. 中国生物防治, 2006, 22(1):54-57. [6] Gyung-Ja C, Jin-Cheol K, Eun-Jin P, et al. Biological control activity of two isolates of Pseudomonas fluorescens against rice sheath blight[J]. The Plant Pathology Journal, 2006, 22(3):289-294. [7] Parke J L, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39:225-58. [8] 宫安东, 朱梓钰, 路亚南, 等. 吡咯伯克霍尔德氏菌WY6-5的溶磷、抑菌与促玉米生长作用研究[J]. 中国农业科学, 2019, 52(9):1574-1586. [9] Kim S, Lowman S, Hou G, et al. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN[J]. Biotechnology for Biofuels, 2012, 5:37. [10] el-Banna N, Winkelmann G. Pyrrolnitrin from Burkholderia cepacia:antibiotic activity against fungi and novel activities against Streptomycetes[J]. Journal of Applied Microbiology, 1998, 85:69-78. [11] 许萌杏, 李凤芳, 袁高庆, 等. 洋葱伯克霍尔德氏菌JX-1防治番茄青枯病机理的初步分析[J]. 中国生物防治学报, 2021, 37(2):304-314. [12] Wang C, Henkes L M, Doughty L B, et al. Thailandepsins:bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities[J]. Journal of Natural Products, 2011, 74:2031-2038. [13] Nakou I T, Jenner M, Dashti Y, et al. Genomics-driven discovery of a novel glutarimide antibiotic from Burkholderia gladioli reveals an unusual polyketide synthase chain release mechanism[J]. Angewandte Chemie, 2020, 59:23145-23153. [14] Kang Y, Carlson R, Tharpe W, et al. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani[J]. Applied and Environmental Microbiology, 1998, 64:3939-3947. [15] Souza J T, Raaijmakers J M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp.[J]. FEMS Microbiology Ecology, 2003, 43:21-34. [16] Lu S E, Novak J, Austin F W, et al. Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans[J]. Biochemistry, 2009, 48:8312-8321. [17] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. [18] Kvitko B H, Collmer A. Construction of Pseudomonas syringae pv. tomato DC3000 mutant and polymutant strains[J]. Methods in Molecular Biology, 2011, 712:109-128. [19] Wang X, Chen D, Wang J, et al. Cloning and analysis of genes controlling antibacterial activities of Burkholderia pyrrocinia strain Lyc2[J]. Current microbiology, 2019, 76:1003-1009. [20] Arriel-Elias M T, de Carvalho Barros Cortes M V, de Sousa T P, et al. Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113[J]. Environmental Science and Pollution Research International, 2019, 26:19705-19718. [21] Depoorter E, Coenye T, Vandamme P. Biosynthesis of ditropolonyl sulfide and antibacterial compound produced by Burkholderia cepacia complex strain R-12632[J]. Applied and Environmental Microbiology, 2021, 87(22):e0116921. [22] Peng L Y, Yi T, Song X P, et al. Mobilization of recalcitrant phosphorous and enhancement of pepper P uptake and yield by a new biocontrol and bioremediation bacterium Burkholderia cepacia CQ18[J]. Journal of Applied Microbiology, 2021, 130(6):1935-1948. [23] Kunakom S, Eustaquio A S. Burkholderia as a source of natural products[J]. Journal of Natural Products, 2019, 82:2018-2037. [24] Song D, Chen G, Liu S, et al. Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani[J]. Microbial Pathogenesis, 2019, 127:1-6. [25] Pawar S, Chaudhari A, Prabha R, et al. Microbial pyrrolnitrin:natural metabolite with immense practical utility[J]. Biomolecules, 2019, 9(9):433. [26] Schmidt S, Blom J F, Pernthaler J, et al. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex[J]. Environmental Microbiology, 2009, 11(6):1422-1437. [27] Liu X G, Bimerew M, Ma Y X, et al. Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica[J]. FEMS Microbiology Letters, 2007, 270(2):299-305. [28] Chen L, Wang Y, Miao J, et al. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05[J]. Applied Microbiology and Biotechnology, 2021, 105(20):7825-7839. [29] Schell M A, Molecular biology of the LysR family of transcriptional regulators[J]. Annual Review Microbiology, 1993, 47:597-626. [30] Fan X, Zhao Z, Sun T, et al. The LysR-type transcriptional regulator CrgA negatively regulates the flagellar master regulator FlhDC in Ralstonia solanacearum GMI1000[J]. Journal of Bacteriology, 2020, 203(1):e00419-20. [31] Nguyen Le Minh P, Velazquez Ruiz C, Vandermeeren S, et al. Differential protein-DNA contacts for activation and repression by ArgP, a LysR-type (LTTR) transcriptional regulator in Escherichia coli[J]. Microbiology Research, 2018, 206:141-158. [32] Maddocks S E, Oyston P C F. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins[J]. Microbiology (Reading), 2008, 154:3609-3623. [33] Mao X M, Sun Z H, Liang B R, et al. Positive feedback regulation of StgR expression for secondary metabolism in Streptomyces coelicolor[J]. Journal of Bacteriology, 2013, 195:2072-2078. [34] Mao D N, Bushin L B, Moon K, et al. Discovery of ScmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:E2920-E8. [35] Lu J S, Huang X Q, Li K, et al. LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18[J]. Journal of Biotechnology, 2009, 143:1-9. [36] Le Guillouzer S, Groleau M C, Mauffrey F, et al. ScmR, a global regulator of gene expression, Quorum sensing, pH homeostasis, and virulence in Burkholderia thailandensis[J]. Journal of Bacteriology, 2020, 202(13):e00776-19. [37] Subramoni S, Nguyen D T, Sokol P A. Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence[J]. Infection and Immunity, 2011, 79:2984-2997. [38] Wang K, Li X, Yang C, et al. A LysR family transcriptional regulator modulates Burkholderia cenocepacia biofilm formation and protease production[J]. Applied and Environmental Microbiology, 2021, 87:e0020221. [39] O'Grady E P, Nguyen D T, Weisskopf L, et al. The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes[J]. Journal of Bacteriology, 2011, 193:163-176. [40] Gomes M C, Tasrini Y, Subramoni S, et al. The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection[J]. PLoS Pathogens, 2018, 14:e1007473. |
[1] | LI Hongmei, WANG Junya, ZHUO Fuyan, ZHU Jingquan, TU Xiongbing, ZHANG Guocai, BELINDA Luke. Review on the Occurrence and Management Technology of Ceracris kiangsu in China [J]. Chinese Journal of Biological Control, 2022, 38(2): 531-536. |
[2] | GUO Peipei, PATIMA·Wumuerhan, REN Haohui, Tuersunayi·Aisan, MA Deying. Influence of Releasing Hippodamia variegate at Different Natural Enemy/Pest Ratios on the Control and Colonization of Aphids craccivora on Cowpea in Protected Cultivation [J]. Chinese Journal of Biological Control, 2022, 38(2): 312-320. |
[3] | LI Jingjing, TIAN Ci, WANG Mingsi, LIU Luwei, LI Muyang, MA Shujie, ZHANG Lihui, DONG Jingao. Inhibition Effects of Extracts from 113 Plant Species on the Germination and Growth of Amaranthus retroflexus and Digitaria sanguinlis [J]. Chinese Journal of Biological Control, 2022, 38(2): 374-382. |
[4] | LIN Jia, Yang Deqing, HAO Xuxing, JIA Pingfan, CAI Pumo, LIU Changming, JI Qing'e. Effect of Cold Storage on the Biological Characteristics of Fopius vandenboschi (Fullaway) [J]. Chinese Journal of Biological Control, 2022, 38(2): 292-299. |
[5] | WANG Yanan, LI Ping, HE Weiwei, ZHANG Maosen, WANG Mengqing, MAO Jianjun, ZHANG Lisheng, LI Yuyan. Predation of the Eggs and Young Larvae of Spodoptera litura by the Third Instar Larvae of Chrysopa formosa [J]. Chinese Journal of Biological Control, 2022, 38(2): 321-327. |
[6] | JI Xiangyun, JIANG Jiexian, LI Wenwei, WANG Jinyan, ZHANG Hao, ZHANG Xu. Effect of Temperature on Parasitism Rate and Life History Parameters of a Solitary Endoparasitoid, Microplitis pallidipes [J]. Chinese Journal of Biological Control, 2022, 38(2): 300-305. |
[7] | ZHENG Yanan, ZHANG Yanlong, SHI Yong, FAN Lichun, LI Yang. Preliminary study on the control efficiency of Monochamus saltuarius by Sclerodermus spp. [J]. Chinese Journal of Biological Control, 2022, 38(2): 306-311. |
[8] | SONG Jian, Zhang Haijian, FENG Shuo, CHENG Jiaxu, Liu Jianhu, Guo Weibing, CAO Weiping. Optimization of Fermentation Culture Medium and Flask Fermentation Conditions for Bacillus thuringiensis Strain JQD117 with High Toxicity against Bradysia odoriphaga [J]. Chinese Journal of Biological Control, 2022, 38(2): 333-341. |
[9] | HUANG Peng, YAO Jinai, YU Deyi, HOU Xiangyu. Biological Characteristics and Infection Activity of Beauveria bassiana BB-T02 against Two Quarantine Mealybugs [J]. Chinese Journal of Biological Control, 2022, 38(2): 342-348. |
[10] | LI Lei, ZHANG Lei, ZHAO Zongxiang, WANG Mengru, LI Shiguang. Compatibility of Metiarium flavoride with Trans-Anethole and Their Cotoxicity to Pieris rapae [J]. Chinese Journal of Biological Control, 2022, 38(2): 349-359. |
[11] | JIN Weixin, JIANG Yiping, SHEN Fei, WANG Ruyan, GAO Han, WAN Chengdong, XIAO Liubin. Control of Grapholita molesta by Using Mating Disruption in Peach Orchard for Many Years [J]. Chinese Journal of Biological Control, 2022, 38(2): 360-366. |
[12] | YAO Yanan, FENG Yeqing, GENG Jingjing, XU Yumei, ZHAO Zengqi, WANG Jianming. Control Efficacy of Ochrobactrum pseudogrignonese A-29 against Southern Root-knot Nematode and Its Identification [J]. Chinese Journal of Biological Control, 2022, 38(2): 367-373. |
[13] | QIAO Junqing, SUN Kai, LIU Yongfeng, CHEN Xijun, LIU Youzhou. Optimization of Fermentation Medium for the Production of Surfactin by Engineered Strain B9BD of Bacillus subtilis [J]. Chinese Journal of Biological Control, 2022, 38(2): 383-392. |
[14] | ZHANG Hao, ZHANG Rongsheng, QI Zhongqiang, YU Junjie, QIAO Junqing, LIU Youzhou, LIU Yongfeng. Study of Bacillus amyloliquefaciens Lx-11 Suspension Formulations and Evaluation Its Control Effect on Bacterial Blight of Rice [J]. Chinese Journal of Biological Control, 2022, 38(2): 393-403. |
[15] | AO Mingyuan, ZHANG Xiaoyun, GUO Qinggang, QU Yuanhang, LU Xiuyun, CUI Jianzhou, LI Shezeng, MA Ping. Development of Bacillus subtilis BAB-1 Water Dispersible Tablet to Control Vegetable Gray Mold [J]. Chinese Journal of Biological Control, 2022, 38(2): 404-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||