Chinese Journal of Biological Control ›› 2024, Vol. 40 ›› Issue (4): 727-738.DOI: 10.16409/j.cnki.2095-039x.2024.02.039
• EXPANSION AND SPREAD MECHANISM OF IMPORTANT INVASIVE AGRICULTURAL PESTS AND THEIR EFFICIENT PREVENTION AND CONTROL MEASURES •
LUO Taotao1,2, YAN Shuyan2, CAO Mengyu3, ZHANG Jinghang3, ZHANG Guifen2, WAN Fanghao2, ZHANG Ya1, LI Tao4, LIU Shuangqing1, ZHANG Yibo2
Received:
2024-06-15
Published:
2024-08-06
CLC Number:
LUO Taotao, YAN Shuyan, CAO Mengyu, ZHANG Jinghang, ZHANG Guifen, WAN Fanghao, ZHANG Ya, LI Tao, LIU Shuangqing, ZHANG Yibo. Advances in Biological Control of Tuta absoluta (Meyrick) Based on Predatory Natural Enemy Resources[J]. Chinese Journal of Biological Control, 2024, 40(4): 727-738.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2024.02.039
[1] Desneux N, Wajnberg E, Wyckhuys K A G, et al. Biological invasion of european tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control[J]. Journal of Pest Science, 2010, 83(3): 197-215. [2] 张桂芬, 刘万学, 万方浩, 等. 世界毁灭性检疫害虫番茄潜叶蛾的生物生态学及危害与控制[J]. 生物安全学报, 2018, 27(3): 155-163. [3] Biondi A, Zappala L, Di Mauro A, et al. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?[J]. Biocontrol, 2016, 61(1): 79-90. [4] Desneux N, Han P, Mansour R, et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions[J]. Journal of Pest Science, 2022, 95(1): 17-39. [5] 张桂芬, 张毅波, 刘万学, 等. 诱捕器颜色和悬挂高度对番茄潜叶蛾诱捕效果的影响[J]. 中国农业科学, 2021, 54(11): 2343-2354. [6] Urbaneja A, González C J, Arnó J, et al. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin: Prospects for biocontrol of Tuta absoluta[J]. Pest Management Science, 2012, 68(9): 1215-1222. [7] Biondi A, Guedes R N C, Wan F H, et al. Ecology, worldwide spread, and management of the invasive south American tomato pinworm, Tuta absoluta: past, present, and future[J]. Annual Review of Entomology, 2018, 63: 239-258. [8] 张桂芬, 张毅波, 冼晓青, 等. 新发重大农业入侵害虫番茄潜叶蛾的发生为害与防控对策[J]. 植物保护, 2022, 48(4): 51-58. [9] Wang M H, Ismoilov K, Liu W X, et al. Tuta absoluta management in China: progress and prospects[J]. Entomologia Generalis, 2024, 44: 269-278. [10] Wang Y S, Tian X C, Wang H, et al. Genetic diversity and genetic differentiation pattern of Tuta absoluta across China[J]. Entomologia Generalis, 2023, 43(6): 1171-1181. [11] Gabarra R, Arno J, Lara L, et al. Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish mediterranean coast[J]. Biocontrol, 2014, 59(1): 45-54. [12] Abracos D G, Caldas F, Pechirra A, et al. Intraguild predation and cannibalism among Dicyphini: Dicyphus cerastiivs two commercialized species[J]. Entomologia Experimentalis et Applicata, 2021, 169(1): 90-96. [13] Sabino P H S, Negrisoli A S, Andaló V, et al. Combined application of entomopathogenic nematodes and insecticides in the control of leaf-miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato[J]. Neotropical Entomology, 2019, 48(2): 314-322. [14] 吴进才. 农药诱导害虫再猖獗机制[J]. 应用昆虫学报, 2011, 48(4): 799-803. [15] Siqueira H A A, Guedes R N C, Fragoso D B, et al. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)[J]. International Journal of Pest Management, 2001, 47(4): 247-251. [16] Mansour R, Brevault T, Chailleux A, et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa[J]. Entomologia Generalis, 2018, 38(2): 83-112. [17] Han P, Bayram Y, Shaltiel-Harpaz L, et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges[J]. Journal of Pest Science, 2019, 92: 1317-1327. [18] Wang M, Ismoilov K, Liu W, et al. Tuta absoluta management in China: progress and prospects[J]. Entomologia Generalis, 2024, 44(2): 269-278. [19] Luna M G, Sánchez N E, Pereyra P C, et al. Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies[J]. EPPO Bulletin, 2012, 42(2): 260-267. [20] Biondi A, Chailleux A, Lambion J, et al. Indigenous natural enemies attacking Tuta absoluta (Lepidoptera: Gelechiidae) in southern France[J]. Egyptian Journal of Biological Pest Control, 2013, 23(1): 117. [21] Zappalà L, Biondi A, Alma A, et al. Natural enemies of the south American moth, Tuta absoluta, in Europe, north Africa and Middle East, and their potential use in pest control strategies[J]. Journal of Pest Science, 2013, 86(4): 635-647. [22] Urbaneja A, Monton H, Molla O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis[J]. Journal of Applied Entomology, 2009, 133(4): 292-296. [23] Jaworski C C, Bompard A, Genies L, et al. Preference and prey switching in a generalist predator attacking local and invasive alien pests[J]. PLoS ONE, 2013, 8(12): e82231. [24] Lins J C, van Loon J J A, Bueno V H P, et al. Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics[J]. BioControl, 2014, 59(6): 707-718. [25] Chailleux A, Biondi A, Han P, et al. Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae)–tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control[J]. Journal of Economic Entomology, 2013, 106(6): 2310-2321. [26] van Lenteren J C, Hemerik L, Lins J C, et al. Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato[J]. Insects, 2016, 7(3): 34. [27] Silva D B, Bueno V H P, Montes F C, et al. Population growth of three mirid predatory bugs feeding on eggs and larvae of Tuta absoluta on tomato[J]. BioControl, 2016, 61(5): 545-553. [28] Van Lenteren J C. Can recently found Brazilian hemipteran predatory bugs control Tuta absoluta[J]. IOBC-WPRS Bulletin, 2012, 80: 63-67. [29] Zappalà L, Siscaro G, Biondi A, et al. Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis: T. absoluta control with sulphur[J]. Journal of Applied Entomology, 2012, 136(6): 401-409. [30] Ferracini C, Bueno V H P, Dindo M L, et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and south America[J]. Biocontrol Science and Technology, 2019, 29(6): 578-609. [31] Ingegno B L, Messelink G J, Leman A, et al. Development and thermal activity thresholds of european mirid predatory bugs[J]. Biological Control, 2021, 152: 104423. [32] Bayram Y, Bekta Ö, Büyük M, et al. A survey of tomato leafminer (Tuta absoluta Meyrick) (Lepidoptera: Gelechiidae) and its natural enemies in the South-east Anatolia Region[J]. Türkiye Biyolojik Mücadele Dergisi, 2014, 1: 99-110. [33] Abraços D, Ramos S, Valente F, et al. Functional response and predation rate of Dicyphus cerastii Wagner (Hemiptera: Miridae)[J]. Insects, 2021, 12(6): 530. [34] Queiroz O S, Ramos R S, Gontijo L M, et al. Functional response of three species of predatory Pirate bugs attacking eggs of Tuta absoluta (Lepidoptera: Gelechiidae)[J]. Environmental Entomology, 2015, 44(2): 246-251. [35] Miranda M M M, Picanço M C, Zanuncio J C, et al. Impact of integrated pest management on the population of leafminers, fruit borers, and natural enemies in tomato[J]. Ciência Rural, 2005, 35: 204-208. [36] 蒋正雄, 吴道慧, 羊绍武, 等. 溴氰菊酯对南方小花蝽捕食番茄潜叶蛾能力的影响[J]. 植物保护, 2022, 48(6): 127-132. [37] Speranza S, Melo M C, Luna M G, et al. First record of Zelus obscuridorsis (Hemiptera: Reduviidae) as a predator of the South American tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae)[J]. Florida Entomologist, 2014: 295-297. [38] 杨韵, 孙淦琳, 王文倩, 等. 益蝽对番茄潜叶蛾的捕食行为及捕食能力研究[J]. 环境昆虫学报, 2023, 45(1): 179-188. [39] Yang G Q, Fan W, Zhang Q, et al. Predatory function of Harmonia axyridis and Propylea japonica larvae to young larvae of Tuta absoluta[J]. Chinese Journal of Biological Control, 2022, 38(4): 959-966. [40] Schuman M C, Baldwin I T. The layers of plant responses to insect herbivores[J]. Annual Review of Entomology, 2016, 61(1): 373-394. [41] Urbaneja A, Tapia G, Stansly P. Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Het.: Miridae)[J]. Biocontrol Science and Technology, 2005, 15(5): 513-518. [42] Picanco M C, Bacci L, Queiroz R B, et al. Social wasp predators of Tuta absoluta[J]. Sociobiology, 2011, 58(3): 621-633. [43] Geervliet J B F, Posthumus M A, Vet L E M, et al. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species[J]. Journal of Chemical Ecology, 1997, 23(12): 2935-2954. [44] Sivakumar T, Josephrajkumar A, Anitha N. First report of tomato pinworm, Tuta absoluta (Meyrick) on egg plant Solanam melongena L. from Kerala, India[J]. Entomology, 2017, 42(4): 335-338. [45] Ismoilov K, Wang M, Jalilov A, et al. First report using a native lacewing species to control Tuta absoluta: from laboratory trials to field assessment[J]. Insects, 2020, 11(5): 286. [46] Metwally A M, Momen F M, Nasr A K, et al. Prey suitability of Tuta absoluta larvae-(Lepidoptera: Gelechiidae) for three predatory Phytoseiid Mites (Acari: Phytoseiidae) under laboratory conditions[J]. Acta Phytopathologica et Entomologica Hungarica, 2015, 50(1): 105-113. [47] Momen F, Metwally A, Nasr A, et al. First report on suitability of the tomato borer Tuta absoluta eggs (Lepidoptera: Gelechiidae) for eight predatory phytoseiid mites (Acari: Phytoseiidae) under laboratory conditions[J]. Acta Phytopathologica et Entomologica Hungarica, 2014, 48(2): 321-331. [48] Al-Azzazy M M, Alhewairini S S, Abdel-Baky N F, et al. Evaluation of the effectiveness of Neoseiulus cucumeris (Oudemans) as a predator of Tuta absoluta (Meyrick)[J]. Brazilian Journal of Biology, 2022, 82: e255753. [49] Roberts-McEwen T A, Deutsch E K, Mowery M A, et al. Group-living spider Cyrtophora citricola as a potential novel biological control agent of the tomato pest Tuta absoluta[J]. Insects, 2022, 14(1): 34. [50] Legaspi J C. Life history of Podisus maculiventris (Heteroptera: Pentatomidae) adult females under different constant temperatures[J]. Environmental Entomology, 2004, 33(5): 1200-1206. [51] Denez M D, Bueno A D F, Pasini A, et al. Biological parameters of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with different soybean insect pests[J]. Annals of the Entomological Society of America, 2014, 107(5): 967-974. [52] Mollá O, Biondi A, Alonso-Valiente M, et al. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control[J]. BioControl, 2014, 59(2): 175-183. [53] Castañé C, Zapata R. Rearing the predatory bug Macrolophus caliginosus on a meat-based diet[J]. Biological Control, 2005, 34(1): 66-72. [54] Sanchez J A. Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops[J]. Biological Control, 2009, 51(3): 493-498. [55] Vandekerkhove B, De Clercq P. Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus[J]. Biological Control, 2010, 53(2): 238-242. [56] Bueno V H P, van Lenteren J C, Lins J C, et al. New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs[J]. Journal of Applied Entomology, 2013, 137(1-2): 29-34. [57] Ingegno B L, Ferracini C, Gallinotti D, et al. Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick)[J]. Biological Control, 2013, 67(2): 246-252. [58] Cagnotti C L, Arias A E, Ermantraut E N, et al. Life history study of the mirid Tupiocoris cucurbitaceus feeding on Tuta absoluta eggs: implications for biological control and its combination with inherited sterility[J]. Biocontrol, 2021, 66(2): 207–216. [59] van Lenteren J C, Bueno V H P, Calvo F J, et al. Comparative effectiveness and injury to tomato plants of three neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae)[J]. Journal of Economic Entomology, 2018, 111(3): 1080-1086. [60] van Lenteren J C, Bueno V H P, Smit J, et al. Predation of Tuta absoluta eggs during the nymphal stages of three Neotropical mirid predators on tomato[J]. Bulletin of Insectology, 2017, 70(1): 69-74. [61] Arno J, Sorribas R, Prat M, et al. Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain[J]. IOBC/WPRS Bulletin, 2009, 49: 203-208. [62] Eubanks M D, Denno R F. Host plants mediate omnivore-herbivore interactions and influence prey suppression[J]. Ecology, 2000, 81(4): 936947. [63] Jamwal R, Sharma P L, Verma S C, et al. Demographics and functional response of Blaptostethus pallescens preying on Tuta absoluta[J]. Phytoparasitica, 2021, 49(4): 589-601. [64] Al-Atawi F J. Phytophagous and predaceous mites associated with vegetable crops from Riyadh, Saudi Arabia[J]. Saudi Journal of Biological Sciences, 2011, 18(3): 239-246. [65] Al-Shemmary K A. The availability of rearing Neoseiulus cucumeris (Oud.) and Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) on three insect egg species[J]. Egyptian Journal of Biological Pest Control, 2018, 28(1): 79-87. [66] Jafari S, Bazgir F. Life history traits of predatory mite Typhlodromus (Anthoseius) bagdasarjani (Phytoseiidae) fed on Cenopalpus irani (Tenuipalpidae) under laboratory conditions[J]. Systematic and Applied Acarology, 2015, 20(4): 366-374. [67] 周军辉, 李鹏雷, 祖农乃吾扎提, 等. 龟纹瓢虫对柑橘木虱的捕食功能反应及猎物偏好性[J]. 植物保护学报, 2020, 47(5): 1062-1070. [68] Holling C S. Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959, 91(7): 385-398. [69] Pereira R R, Picanço M C, Santana Jr P A, et al. Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta[J]. Agricultural and Forest Entomology, 2014, 16(3): 293-301. [70] Ballal C R, Akbar S A, Yamada K, et al. Annotated catalogue of the flower bugs from India (Heteroptera: Anthocoridae, Lasiochilidae)[J]. Acta Entomologica Musei Nationalis Pragae, 2018, 58(1): 207-226. [71] Michaelides G, Sfenthourakis S, Pitsillou M, et al. Functional response and multiple predator effects of two generalist predators preying on Tuta absoluta eggs[J]. Pest Management Science, 2018, 74(2): 332-339. [72] Chailleux A, Biondi A, Han P, et al. Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae)-tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control[J]. Journal of Economic Entomology, 2013, 106(6): 2310-2321. [73] Mohammadpour M, Michaud J P, Hosseini M, et al. Age and parasitism status of Tuta absoluta eggs alter the foraging responses of the predator Nabis pseudoferus[J]. BioControl, 2021, 66(3): 395-406. [74] Mirhosseini M A, Fathipour Y, Soufbaf M, et al. Implications of using two natural enemies of Tuta absoluta (Lepidoptera: Gelechiidae) toward tomato yield enhancement[J]. Bulletin of Entomological Research, 2019, 109(05): 617-625. [75] Denis C, Riudavets J, Alomar O, et al. Dolichogenidea gelechiidivoris Marsh (Hymenoptera: Braconidae), a new biological control agent of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in the Mediterranean basin[J]. IOBC/WPRS Bulletin, 2023, 167: 37-38. [76] Chailleux A, Droui A, Bearez P, et al. Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta[J]. Ecology and Evolution, 2017, 7(20): 8329-8337. [77] Calvo F J, Soriano J D, Stansly P A, et al. Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae)?[J]. Bulletin of Entomological Research, 2016, 106(4): 502-511. [78] Arnó J, Gabarra R. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae)[J]. Journal of Pest Science, 2011, 84(4): 513-520. [79] Madbouni M A Z, Samih M A, Qureshi J A, et al. Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis[J]. PLoS ONE, 2017, 12(11): e0187439. [80] Passos L C, Soares M A, Collares L J, et al. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta[J]. Entomologia Generalis, 2018, 38(2): 127-143. [81] Pilkington L J, Messelink G, van Lenteren J C, et al. “Protected Biological Control"–biological pest management in the greenhouse industry[J]. Biological Control, 2010, 52(3): 216-220. [82] Crowther L I, Wilson K, Wilby A. The impact of field margins on biological pest control: a meta-analysis[J]. BioControl, 2023, 68(4): 387-396. [83] Han P, Desneux N, Becker C, et al. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management[J]. Journal of Pest Science, 2019, 92(4): 1359-1370. [84] Han P, Lavoir A V, Rodriguez-Saona C, et al. Bottom-up forces in agroecosystems and their potential impact on arthropod pest management[J]. Annual Review of Entomology, 2022, 67(1): 239-259. [85] Hunter M D, Price P W. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-sown forces in natural communities[J]. Ecology, 1992, 73(3): 724-732. [86] Denno R F, Gratton C, Peterson M A, et al. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community[J]. Ecology, 2002, 83(5): 1443-1458. [87] Han P, Rodriguez-Saona C, Zalucki M P, et al. A theoretical framework to improve the adoption of green integrated pest management tactics[J]. Communications Biology, 2024, 7: 337. [88] Naranjo S E, Ellsworth P C, Frisvold G B. Economic value of biological control in integrated pest management of managed plant systems[J]. Annual Review of Entomology, 2015, 60(1): 621-645. [89] 胡珊珊, 谢丹, Ismoilov Khasan, 等. 上行效应与下行效应在番茄潜叶蛾防控中的应用[J]. 植物保护学报, 2024, 51(1): 1-11. |
[1] | JIANG Zhengxiong, CHEN Heng, SUN Ying, ZHOU Shunwen, ZHANG Jinlong, CHEN Guohua, ZHU Qingqing, ZHANG Xiaoming. Effect of Bacillus thuringiensis G033A on the Ability of Three Trichogramma Species to Parasitize Tuta absoluta [J]. Chinese Journal of Biological Control, 2024, 40(3): 524-531. |
[2] | TIAN Yanli, YANG Yixin, ZHANg Yulu, WANG Xiaowei, LIU Yinquan. Effects of Host Plant and Prey on Nymphal Survival and Development of the Omnivorous Predator, Nesidiocoris tenuis [J]. Chinese Journal of Biological Control, 2024, 40(3): 542-549. |
[3] | RUAN Miaohong, ZHENG Xiuqing, GAN Lin, HUANG Weiqun, DAI Yuli, LAN Chenzhong, YANG Xiujuan. Resistance of Different Fresh Maize Varieties to Sheath Rot and Control Effects of Biocontrol Agents on Disease [J]. Chinese Journal of Biological Control, 2024, 40(3): 652-660. |
[4] | ZHANG Yaqian, QU Yuli, LI Baoping. Non-consumptive Effects of the Predatory Stinkbug Arma custos Adults on Growth,Development and Reproduction of the Oriental Armyworm Mythimna separata [J]. Chinese Journal of Biological Control, 2024, 40(2): 248-256. |
[5] | LI Xiaomeng, LIU Bin, TIAN Chunyan, ZHANG Yang, XU Wenping. Control Effect of Bacillus velezensis S297 on Lettuce Sclerotinia [J]. Chinese Journal of Biological Control, 2024, 40(2): 399-410. |
[6] |
FU Linyun, LI Jing, LI Na, LIU Jinxia, DING Ping, NIE Yaoyan, WU Jianrong, YANG Cheng.
Optimization of Fermentation Conditions of Streptomyces sp. SS9-1 and Its Control Effect on Tomato Gray Mold [J]. Chinese Journal of Biological Control, 2024, 40(1): 126-136. |
[7] | WANG Qiao, YANG Long, PAN Yunfei, LI Haiqiang, LU Yanhui. Predation of Ladybeetle Hippodamia variegata on Walnut Aphid Chromaphis juglandicola [J]. Chinese Journal of Biological Control, 2023, 39(6): 1289-1294. |
[8] | REN Peng, LI Zhimo, SHEN Xiuxian, WANG Xiong, YU Xiaofei, LIU Jianfeng, HUANG Chunyang, YAGN Maofa. Control Potential of Aphidoletes aphidimyza (Rondani) on Melanaphis sacchari (Zehntner) [J]. Chinese Journal of Biological Control, 2023, 39(6): 1327-1333. |
[9] | BAI Xueying, HAN Jian, SUN Boyuan, SONG Shumin, LUO Ming, SUN Liying. Screening and Identification of Biocontrol Potential Myxobacteria Strains against Fire Blight and Pear Canker Diseases and Evaluation of Indoor Control Efficacy [J]. Chinese Journal of Biological Control, 2023, 39(6): 1384-1397. |
[10] | WANG Fei, YANG Jin, LI Shaojian, LI Xuemeng, WEN Yi, ZHAO Ying, QIN Yanhong, GAO Suxia, LIU Yuxia, LU Chuantao. Screening of Antagonistic Isolate Bacillus velezensis Bv1-4 and Its Control Effect against Root Rot Disease on Salvia miltiorrhiza [J]. Chinese Journal of Biological Control, 2023, 39(6): 1398-1407. |
[11] | HE Pengyang, LI Xian, LIU Tongxian, ZHANG Shize. Ontogeny of Cotesia ruficrus, a Parasitoid of Spodoptera frugiperda [J]. Chinese Journal of Biological Control, 2023, 39(6): 1488-1494. |
[12] | PENG Jiamin, PATIMA Wumuerhan, GUO Xiaohu, Kurbanisaguli OBLIKASM, YANG Shiping, LI Taifeng, WANG Xincui, ZHU Lihua, MA Deying. Effects of Trap Crops in Cotton Field on the Population Dynamics of Aphis gosspyii and Predatory Natural Enemies [J]. Chinese Journal of Biological Control, 2023, 39(5): 1038-1048. |
[13] | FU Nanxia, LUO Zongxiu, LI Zhaoqun, BIAN Lei, XIU Chunli, CHEN Zongmao, CAI Xiaoming. Isolation, Identification, and Pathogenicity of a Beauveria bassiana Strain Isolated from Tea Weevils Myllocerinus aurolineatus Larvae [J]. Chinese Journal of Biological Control, 2023, 39(5): 1104-1112. |
[14] | XU Peiling, HAN Wenxin, WANG Gang, CHEN Wen, GAO Hongshan, Lü Minghui, YANG Xiangming, ZHU Yanze, JIANG Chunhao. The Study on Screening, Identification and Its Potential Application of Biocontrol Agents against Fusarium oxysporum f. sp. niveum [J]. Chinese Journal of Biological Control, 2023, 39(5): 1253-1265. |
[15] | HAO Jinhui, LIN Shengnan, WU Zifei, WANG Ning, ZHAN Faqiang, SHI Yingwu, HE Yafang, YANG Rong, HOU Xinqiang, BAO Huifang. Effect of Paenibacillus polymyxa JE53 on Korla Pear Black Spot Pathogen and Fruit Quality during Storage [J]. Chinese Journal of Biological Control, 2023, 39(5): 1266-1274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||