[1] 殷晓敏, 金志强. 西瓜枯萎病综合防控技术规程[J]. 安徽农业科学, 2016, 44(1): 184-186. [2] Zhang Z, Zhang J, Wang Y. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil[J]. FEMS Microbiology Letters, 2005, 249(1): 39-47. [3] 吕湘江, 李清萍, 范淑英. 西瓜枯萎病综合防治研究进展[J]. 北方园艺, 2015(6): 187-190. [4] 宋阳, 陈梦, 吴新财, 等. 产几丁质酶菌株Acinetobacter sp. CZW011的筛选鉴定与酶学性质研究[J]. 中国食品添加剂, 2022, 33(11): 1-8. [5] Arakane Y, Muthukrishnan S. Insect chitinase and chitinase-like proteins[J]. Cellular and Molecular Life Sciences. 2010, 67(2): 201-216. [6] Wu M L, Chuang Y C, Chen J P, et al. Identification and characterization of the three chitin-binding domains with the multi-domain chitinase Chi92 from Aeromonas hydrophila JP101[J]. Applied and Environmental Microbiology, 2001, 67(11): 5100-5106. [7] Susuki K, Sugawara N, Susuki M, et al. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant E. coli: enzy-matic properties ad synergism on chitin degradation[J]. Bioscience, Biotechnology and Biochemistry, 2002, 66(5): 1075-1083. [8] Chernin L, Ismailov Z, Haran S, et al. Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens[J]. Applied and Environmental Microbiology, 1995, 61(5): 1720-1726. [9] 覃可, 桑维钧, 陈孝玉龙, 等. 烟草拮抗链霉菌FT05W基因组测序与几丁质酶家族基因鉴定[J]. 中国生物防治学报, 2019, 35(03): 463-473. [10] Martínez-Zavala S A, Barboza-Pérez U E, Hernández-Guzmán G, et al. Chitinases of Bacillus thuringiensis: phylogeny, modular structure and applied potentials[J]. Frontiers in Microbiology, 2020, 10: 3032. [11] 宁为民. 一株几丁质降解菌的分离鉴定、酶基因克隆表达及对凡纳对虾生长和肠道菌群影响[D]. 湛江:广东海洋大学, 2021. [12] 王巧贞, 李锋, 易淑琼, 等. 茅尾海桐花树根际土壤来源几丁质降解菌株多样性及抗植物真菌活性的研究[J]. 中国抗生素杂志, 2022, 47(5): 453-462. [13] Moon C, Seo D J, Song Y S, et al. Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1[J]. Microbial Pathogenesis, 2017, 113: 218-224. [14] Liu K, Ding H, Yu Y, et al. A Cold-Adapted chitinase-producing bacterium from antarctica and its potential in biocontrol of plant pathogenic fungi[J]. Marine Drugs, 2019, 17(12): 695. [15] 黄祥娟, 陆禄, 翁培耀. 浅谈广西茅尾海红树林保护区建设及生态环境保护对策[J]. 农业与技术, 2022, 42(2): 99-101 [16] 刘文娟, 陈新, 李建聪, 等. 海南红树林沉积中硫酸盐还原菌群落的特征[J]. 热带生物学报, 2023, 14(1): 120-128. [17] 钟志伟. 红树林内生真菌30#和THSH-3#次级代谢产物发现及其生物活性研究[D]. 广州: 广东工业大学, 2022. [18] 陈爽, 王继华, 张必弦, 等. 贝莱斯芽孢杆菌对大豆根腐病盆栽防效及防御酶活性检测[J]. 分子植物育种, 2022, 20(19): 6492-6500. [19] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [20] 徐敬华, 黄丹枫, 支月娥. PAL活性与嫁接西瓜枯萎病抗性传递的相关性[J]. 上海交通大学学报(农业科学版), 2004(1): 12-16. [21] 赵美茜. 生防菌茂物朝井杆菌CSR-2抑菌作用研究及全基因组序列分析[D]. 长春: 吉林大学, 2022. [22] 左杨, 张心宁, 乔俊卿, 等. 辣椒溶杆菌NF87-2防治瓜类蔬菜蔓枯病的研究[J]. 中国生物防治学报, 2021, 37(6): 1241-1249. [23] Xiao L, Niu H J, Qu T L, et al. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and invivo by producing oligomycin A[J]. Pesticide Biochemistry and Physiology, 2021, 175: 104834. [24] Ma D Y, Ji D C, Zhang Z Q, et al. Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold[J]. Postharvest Biology and Technology, 2019, 150: 158-165 [25] Qin Y S, Tu S H, Feng W Q, et al. Effects of long-term fertilization on micro-morphological features in purple soil[J]. Agricultural Science & Technology, 2012, 13(5): 1050-1054. [26] Martyn R D. Fusarium wilt of watermelon: 120 years of research[J]. Horticultural Reviews, 2014, 42(1): 349-442. [27] 孙于淼, 吴慧玲, 张涛涛, 等. 5406放线菌对西瓜的促生作用及对西瓜枯萎病的防控[J]. 科学技术与工程, 2021, 21(15): 6242-6248. [28] 张雨阳, 魏有海, 郭良芝, 等. 黄三素链霉菌15-6发酵液的抑菌活性研究[J]. 湖南农业科学, 2021(9): 25-28,41. [29] 徐静. 红树林微生物天然产物化学研究[M]. 北京:科学出版社, 2015, 5(2): 841-892. [30] Jiang Z K, Hu X X, Xiao L L, et al. Beilunmycin, a new virginiamycins antibiotic from mangrove-derived Streptomyces sp. 2BBP-J2 and the antibacterial activity by inhibiting protein translation[J]. Journal of Asian Natural Products Research, 2020, 23(10): 1-9. [31] Xu L Y, Quan X S, Wang C, et al. Antimycins A(19) and A(20), two new antimycins produced by marine actinomycete Streptomyces antibioticus H74-18[J]. The Journal of Antibiotics, 2011, 64(10): 661-665. [32] Li K L, Chen S Q, Pang X Y, et al. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis[J]. European Journal of Medicinal Chemistry, 2022, 230: 114117. [33] Ding L, Hertweck C. Oxygenated geosmins and plant-like eudesmanes from a bacterial mangrove endophyte[J]. Journal of Natural Products, 2020, 83(7): 2207-2211. [34] Indupalli M, Muvva V, Mangamuri U, et al. Bioactive compounds from mangrove derived rare actinobacterium Saccharomonospora oceani VJDS-3[J]. Biotech, 2018, 8(2): 103. [35] Li X G, Tang X M, Xiao J, et al. Harnessing the potential of halogenated natural product biosynthesis by mangrove-derived actinomycetes[J]. Marine Drugs, 2013, 11(10): 3875-3890. [36] Wang J, Xu C, Sun Q, et al. Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens[J]. Microbiome, 2021, 9(1): 131. [37] Xu Y Q, Tong Z C, Zhang X, et al. Unveiling the mechanisms for the plant volatile organic compound linalool to control gray mold on strawberry fruits[J]. Journal of Agricultural and Food Chemistry, 2019, 67(33): 9265-9276. [38] He C, Zhang Z Q, Li B Q, et al. Effect of natamycin on Botrytis cinerea and Penicillium expansum—postharvest pathogens of grape berries and jujube fruit[J]. Postharvest Biology and Technology, 2019, 151: 134-141. |