[1] Zurek L, Schal C, Watson D W. Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae[J]. Journal of Medical Entomology, 2000, 37: 924-928. [2] Buchon N, Broderick N A, Chakrabarti S, et al. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila[J]. Genes Development, 2009, 23: 2333-2344. [3] Chen Y P, Li Y H, Sun Z X, et al. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda[J]. Insects, 2022, 13(4): 373. [4] Matos R C, Leulier F. Lactobacilli-host mutualism: “learning on the fly”[J]. Microbial Cell Factories, 2014, 13(S1): 6. [5] Antwis R E, Griffiths S M, Harrison X A, et al. Fifty important research questions in microbial ecology[J]. FEMS Microbiology Ecology, 2017, 93: fix044. [6] Huang X F, Bakker M G, Judd T M, et al. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates[J]. Microbial Ecology, 2013, 65: 531-536. [7] Cristina V, Joaquín B, Amparo L, et al. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp.[J]. Frontiers in Microbiology, 2016, 7: 1005. [8] Mikaelyan A, Dietrich C, Köhler T, et al. Diet is the primary determinant of bacterial community structure in the guts of higher termites[J]. Molecular Ecology, 2015, 24: 5284-5295. [9] Kim J M, Jo A, Lee K A, et al. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera)[J]. Journal of Microbiology, 2017, 55: 21-30. [10] Nuringtyas T R, Verpoorte R, Klinkhamer P G L, et al. Toxicity of pyrrolizidine alkaloids to spodoptera exigua using insect cell lines and injection bioassays[J]. Journal of Chemical Ecology, 2014, 40: 609-616. [11] Dillon R, Dillon V. The gut bacteria of insects: Nonpathogenic interactions[J]. Annual Reviews in Entomology, 2004, 49: 71-92. [12] Graber J R, Breznak J A. Physiology and nutrition of Treponema primitia, an H2/CO2 acetogenic spirochete from termite hindguts[J]. Applied and Environmental Microbiology, 2004, 70: 1307-1314. [13] Fraune S, Bosch T C. Why bacteria matter in animal development and evolution[J]. BioEssays, 2010, 32: 571-580. [14] Watanabe H, Tokuda G. Cellulolytic systems in insects[J]. Annual Review of Entomology, 2010, 55: 609-632. [15] Storelli G, Defaye A, Erkosar B, et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing[J]. Cell Metabolism, 2011, 14: 403-414. [16] Kikuchi Y, Hayatsu M, Hosokawa T, et al. Symbiont-mediated insecticide resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 8618-8622. [17] Prado S S, Almeida R P P. Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica[J]. Entomologia Experimentalis et Applicata, 2009, 132(1): 21-29. [18] Chu C C, Spencer J L, Curzi M J, et al. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(29): 11917-11922. [19] Chang P E C, Metz M A. Classifcation of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae: Gelechiinae: Gnorimo schemini) based on cladistic analysis of morphology[J]. Proceedings of The Entomological Society of Washington, 2021, 123: 41-54. [20] Biondi A, Guedes R N C, Wan F H, et al. Ecology, worldwide spread, and management of the invasive south American tomato pinworm, Tuta absoluta: past, present, and future[J]. Annual Review of Entomology, 2018, 63, 239-258. [21] Viggiani G, Filella F, Delrio G, et al. Tuta absoluta, nuovo lepidottero segnalato anchein Italia. L'Informat[J]. Agricultural, 2009, 65: 66-68. [22] Bawin T, Dujeu D, De Backer L, et al. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species[J]. The Canadian Entomologist, 2015, 148(4): 434-442. [23] 张桂芬, 张毅波, 冼晓青, 等. 新发重大农业入侵害虫番茄潜叶蛾的发生为害与防控对策[J]. 植物保护, 2022, 48(4): 51-58. [24] Zibaee I, Mahmood K, Esmaeily M, et al. Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran[J]. Journal of Applied Entomology, 2018, 142: 181-19. [25] Beck J J, Vannette R L. Harnessing insect-microbe chemical communications to control insect pests of agricultural systems[J]. Journal of Agricultural and Food Chemistry, 2017, 65: 23-28. [26] Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2011, 366: 1389-1400. [27] Perilla H L M, Casteel C L. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants[J]. Frontiers in Plant Science, 2016, 7: 1163. [28] Kudo R, Hayato M, Rikiya E, et al. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat[J]. The ISME Journal, 2019, 13(3): 676-685. [29] 曹乐, 宁康. 昆虫肠道的宏基因组学: 微生物大数据的新疆界[J]. 微生物学报, 2018, 58(6): 964-984. [30] 白竞. 5种蝗虫肠道微生物多样性分析及纤维素分解菌的分离鉴定[D]. 保定: 河北大学, 2021. [31] Dantur K I, Enrique R, Welin B, et al. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass[J]. AMB Express, 2015, 5: 15. [32] Boone C K, Keefover-Ring K, Mapes A C, et al. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds[J]. Journal of Chemical Ecology, 2013, 39: 1003-1006. [33] Werren J H, Baldo L, Clark M E. Wolbachia: master manipulators of invertebrate biology[J]. Nature Reviews Microbiology, 2008, 6: 741-751. [34] Ahmed M Z, Araujo-Jnr E V, Welch J J, et al. Wolbachia in butterflies and moths: geographic structure in infection frequency[J]. Frontiers in Zoology, 2015, 12: 16. [35] Moriyama M, Nikoh N, Hosokawa T, et al. Riboflavin provisioning underlies Wolbachia's fitness contribution to its insect host[J]. Mbio, 2015, 6: e01732-15. [36] Voirol L R P, Frago E, Kaltenpoth M, et al. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host[J]. Frontiers in Microbiology, 2018, 9: 556. [37] Ma W J, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis[J]. Journal of Evolutionary Biology, 2017, 30: 868-888. [38] Zhang L Y, Yu H, Fu D Y, et al. Mating leads to a decline in the diversity of symbiotic microbiomes and promiscuity increased pathogen abundance in a moth[J]. Frontiers in Microbiology, 2022, 13: 878856. [39] Hong Y, Cui M D, Min R S, et al. The diversity and function of intestinal microorganisms in four geographic Cephalcia chuxiongica (a pine defoliator) populations[J]. Journal of Applied Entomology, 2021, 145(5): 394-405. [40] Engel P; Moran N A. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiology Reviews, 2013, 37: 699-735. [41] Raza M F, Wang Y, Cai Z, et al. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis[J]. PLoS Pathogens, 2020, 16: e1008441. |