[1] Höfte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiological Reviews, 1989, 53(2):242-255. [2] Swiecicka I, Bideshi D K, Federici B A. Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni[J]. Applied and Environmental Microbiology, 2008, 74(4):923-930. [3] Yi D, Cui L, Wang L, et al. Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. capitata) confers effective control against diamondback moth[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(3):419-428. [4] Macharia I, Löhr B, De Groote H. Assessing the potential impact of biological control of Plutella xylostella (diamondback moth) in cabbage production in Kenya[J]. Crop Protection, 2005, 24(11):981-989. [5] Schnepf E, Crickmore N V, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3):775-806. [6] Misztal L H, Mostowska A, Skibinska M, et al. Expression of modified Cry1Ac gene of Bacillus thuringiensis in transgenic tobacco plants[J]. Molecular Biotechnology, 2004, 26(1):17-26. [7] Metz T D, Dixit R, Earle E D. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata)[J]. Plant Cell Reports, 1995, 15(3-4):287-292. [8] Cao J, Tang J D, Strizhov N, et al. Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C[J]. Molecular Breeding, 1999, 5(2):131-141. [9] Cui L, Yang L M, Liu N, et al. Transformation and expressing of Bt gene cry1Ia8 in cabbage[J]. Acta Horticulturae Sinica, 2009, 36(8):1161-1168. [10] Yi D, Lei C U I, Liu Y, et al. Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt cry1Ba3 gene for control of diamondback moth[J]. Agricultural Sciences in China, 2011, 10(11):1693-1700. [11] Sarfraz M, Keddie B A. Conserving the efficacy of insecticides against Plutella xylostella (L.)(Lep., Plutellidae)[J]. Journal of Applied Entomology, 2005, 129(3):149-157. [12] Zhao J Z, Collins H L, Li Y X, et al. Monitoring of diamondback moth (Lepidoptera:Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate[J]. Journal of Economic Entomology, 2006, 99(1):176-181. [13] Tan F, Zhu J, Tang J, et al. Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28[J]. Current Microbiology, 2009, 58(6):654-659. [14] Yu Z, Gong L, Li Q, et al. Diversity of insecticidal crystal protein genes of Bacillus thuringiensis isolated from soil and cloning of novel haplotypes of cry genes[J]. Annals of Microbiology, 2015, 65(4):2179-2186. [15] Yu Z, He L, Gong L, et al. Cloning and characterisation of a novel cry1H gene effective against Lepidopterous larvae from a Bacillus thuringiensis strain[J]. Biocontrol Science and Technology, 2015, 25(12):1483-1492. [16] Shu C, Liu R, Wang R, et al. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae[J]. Current Microbiology, 2007, 55(6):492. [17] Reyes-Ramírez A, Ibarra J E. Plasmid patterns of Bacillus thuringiensis type strains[J]. Applied and Environmental Microbiology, 2008, 74(1):125-129. [18] Sambrook J E, Fritsch F, Maaiatis T. A Laboratory of Molecular Cloning, 3rd edn[M]. New York:Cold Spring Harbor Laboratory Press, 2002. [19] Mahillon J, Chungjatupornchai W, Decock J, et al. Transformation of Bacillus thuringiensis by electroporation[J]. FEMS Microbiology Letters, 1989, 60(2):205-210. [20] Park H W, Bideshi D K, Johnson J J, et al. Differential enhancement of Cry2A versus Cry11A yields in Bacillus thuringiensis by use of the cry3A STAB mRNA sequence[J]. FEMS Microbiology Letters, 1999, 181(2):319-327. [21] Liang H, Liu Y, Zhu J, et al. Characterization of cry2-type genes of Bacillus thuringiensis strains from soil-isolated of Sichuan basin, China[J]. Brazilian Journal of Microbiology, 2011, 42(1):140-146. [22] 马君兰, 束长龙, 刘东明, 等. 大肠杆菌中利用苏云金芽胞杆菌强启动子p1Ac指导Cry1Ac蛋白表达的特性分析[J]. 生物技术通报, 2011(2):80-84. [23] Song F, Zhang J, Gu A, et al. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene[J]. Applied and Environmental Microbiology, 2003, 69(9):5207-5211. [24] Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3):807-813. [25] Li J, Carroll J, Ellar D J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5Å resolution[J]. Nature, 1991, 353(6347):815. [26] Wang L, Guo W, Tan J, et al. Construction of an engineering strain expressing cry7Ab7 gene cloned from Bacillus thuringiensis[J]. Frontiers of Agriculture in China, 2010, 4(3):328-333. [27] Guan P, Dai X, Zhu J, et al. Bacillus thuringiensis subsp. sichuansis strain MC28 produces a novel crystal protein with activity against Culex quinquefasciatus larvae[J]. World Journal of Microbiology and Biotechnology, 2014, 30(4):1417-1421. [28] Zhang Y, Zheng G, Tan J, et al. Cloning and characterization of a novel cry8Ab1 gene from Bacillus thuringiensis strain B-JJX with specific toxicity to scarabaeid (Coleoptera:Scarabaeidae) larvae[J]. Microbiological Research, 2013, 168(8):512-517. |