[1] 韩旸, 吴京城, 庞秋凌, 等. 我国二斑叶螨发生及防控研究概况[J]. 农药, 2023, 62(4): 235-239, 251. [2] 刘学辉, 李中新, 尹淑艳, 等. 四种树种上二斑叶螨生长发育及繁殖差异及其与植物叶片化学组成的关系[J]. 昆虫学报, 2007, 50(11): 1135-1139. [3] 孙月华, 郅军锐, 田甜. 二斑叶螨为害对菜豆生理指标的影响[J]. 生态学杂志, 2014, 33(4): 1010-1014. [4] 陈鹏, 刘奇志. 二斑叶螨为害对草莓叶片H2O2、MDA含量以及部分防御酶活性的影响[J]. 环境昆虫学报, 2022, 44(3): 697-703. [5] 何秉青, 祝宁, 齐长红, 等. 不同草莓品种对3种病虫害的抗性及杀虫剂对二斑叶螨的防效评价[J]. 中国蔬菜, 2023(3): 98-103. [6] 杨建. 我国外来生物入侵的现状及管理对策研究[D]. 武汉: 长江大学, 2010. [7] VanLeeuwen T, Vontas J, Tsagkarakou A, et al. Acaricide-resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review[J]. Insect Biochemistry and Molecular Biology, 2010, 40(8): 563-572. [8] Sparks T C, Nauen R. IRAC: Mode of action classification and insecticide resistance management[J]. Pesticide Biochemistry and Physiology, 2015, 121: 122-128. [9] Kepler R M, Luangsa-Ard J J, Hywel-Jones N L, et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales)[J]. IMA Fungus, 2017, 8(2): 335-353. [10] Wang W X, Zhou L F, Dong G P, et al. Isolation and identification of entomopathogenic fungi and an evaluation of their actions against the larvae of the fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae)[J]. BioControl, 2020, 65(1): 101-111. [11] 苏湘宁, 刘伟玲, 王萌, 等. 生防菌爪哇棒束孢对斜纹夜蛾的防效与安全性评价[J]. 南方农业学报, 2021, 52(4): 995-1001. [12] Xing P X, Diao H L, Wang D, et al. Identification, pathogenicity, and culture conditions of a new isolate of Cordyceps javanica (Hypocreales: Cordycipitaceae) from soil[J]. Journal of Economic Entomology, 2022, 115: 679-683. [13] 张志春, 张怡, 沈迎春, 等. 杀虫真菌爪哇棒束孢对非洲菊烟粉虱作用特点和控害效果[J]. 江苏农业学报, 2020, 36(6): 1398-1402. [14] 常静, 李子奇, 白琳, 等. 巴氏新小绥螨溴氰菊酯抗性品系的筛选及其抗性遗传方式研究[J]. 应用昆虫学报, 2021, 58(6): 1409-1416. [15] 尚素琴, 刘平, 陈耀年, 等. 巴氏新小绥螨对二斑叶螨的捕食功能及控制潜力研究[J]. 植物保护, 2017, 43(3): 118-121, 159. [16] 徐学农, 吕佳乐, 王恩东. 国际捕食螨研发与应用的热点问题及启示[J]. 中国生物防治学报, 2013, 29(2): 163-174. [17] 孙莉, 郑月琼, 陈霞, 等. 4种杀螨剂对二斑叶螨的毒力测定和对少毛钝绥螨的安全性评价[J]. 环境昆虫学报, 2022, 44(5): 1333-1340. [18] Onzo A, Bello I A, Hanna R. Effects of the entomopathogenic fungus Neozygites tanajoae and the predatory mite Typhlodromalus aripo on cassava green mite densities: screenhouse experiments[J]. BioControl, 2013, 58: 397-405. [19] Wu S Y, Gao Y L, Zhang Y P, et al. An Entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation[J]. PLoS ONE, 2014, 9(1): e84732. [20] 吴圣勇. 白僵菌、巴氏新小绥螨和西花蓟马间的互作关系研究[D]. 北京: 中国农业科学院, 2014. [21] Agboton B V, Hanna R, Onzo A, et al. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa[J]. Experimental and Applied Acarology, 2013, 60: 205-217. [22] 王磊. 爪哇虫草菌YFS01菌株的筛选及其与丽蚜小蜂对烟粉虱的联合控害技术研究[D]. 广州: 华南农业大学, 2019. [23] 邢培翔. 一株爪哇棒束孢的发掘与生防潜力研究[D]. 太原: 山西农业大学, 2020. [24] 孟豪. 玫烟色棒束孢IF-1106杀虫谱测定及与球孢白僵菌的致病力对比[D]. 太原: 山西农业大学, 2015. [25] 苟雪莲, 王振营, 涂雄兵, 等. 两株虫生真菌对草地贪夜蛾的致病力及高毒力菌株与卵寄生蜂的相容性[J]. 植物保护学报, 2022, 49(5): 1505-1512. [26] Farish D J. The evolutionary implications of qualitative variation in the grooming behaviour of the Hymenoptera (Insecta)[J]. Animal Behavior, 1972, 20(4): 662-676. [27] Butt T M, Ibrahim L, Clark S J, et al. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles[J]. Mycological Research, 1995, 99(8): 945-950. [28] 王音, 雷仲仁, 张青文, 等. 绿僵菌侵染小菜蛾体表过程的显微观察[J]. 昆虫学报, 2005(2): 188-193. [29] Wu S Y, Guo J F, Xing Z L, et al. Comparison of mechanical properties for mite cuticles in understanding passive defense of phytoseiid mite against fungal infection[J]. Material and Design, 2018, 140(2): 241-248. [30] 李洋. 2021年国内新登记的生物农药品种[J]. 世界农药, 2022, 44(2): 1-8. |