[1] 崔双, 陈昌龙, 冯佳豪, 等. 魔芋软腐病致病菌Pectobacterium aroidearum的特征及贝莱斯芽孢杆菌的生防效果[J]. 中国蔬菜, 2021(3): 83-93. [2] 夏涛, 李梦飞, 张雯, 等. 魔芋软腐病病原菌果胶杆菌ZX67菌株全基因组测序及分析[J]. 中国农学通报, 2022, 38(29): 52-60. [3] 黄露, 刘永翔, 任秀秀, 等. 魔芋软腐病菌的分离鉴定及其GFP标记[J]. 贵州农业科学, 2014, 42(12): 118-121. [4] 王红岩, 郭邦利, 刘惠芬, 等. 魔芋绿色防病高效栽培技术[J]. 中国生物防治学报, 2019, 35(6): 987-991. [5] Glick B R. Plant growth-promoting bacteria: Mechanisms and applications[J]. Scientifica (Cairo), 2012, 2012: 963401. [6] Zhang J, Xue A G, Morrison M J, et al. Impact of time between field application of Bacillus subtilis strains SB01 and SB24 and inoculation with Sclerotinia sclerotiorum on the suppression of Sclerotinia stem rot in soybean[J]. European Journal of Plant Pathology, 2011, 131(1): 95-102. [7] 李广, 李晓芬, 易兰花. 拮抗菌枯草芽孢杆菌1151及其所产抗菌肽对辣椒采后软腐病的控制作用[J]. 食品与发酵工业, 2023, 49(10): 78-84. [8] 张倩, 陈雨诗, 许春艳, 等. 贝莱斯芽孢杆菌防治甜樱桃采后软腐病的效果和机理[J]. 食品科学, 2023, 44(7): 229-239. [9] 王家艳, 何美玲, 朱丹璐, 等. 贝莱斯芽孢杆菌SB023对‘红阳’猕猴桃采后软腐病防治和保鲜效果研究[J]. 六盘水师范学院学报, 2022, 34(05): 105-112. [10] 王莹乐, 李泳霖, 梁雪, 等. 生物炭环境协同生防菌Bacillus amyloliquefaciens P4防控香芋软腐病的研究[J]. 湖北农业科学, 2022, 61(21): 79-85. [11] Rosier A, Medeiros F H V, Bais H P. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions[J]. Plant and Soil, 2018, 428(1): 35-55. [12] Pieterse C M J, Zamioudis C, Berendsen R L, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014, 52(1): 347-375. [13] Busby P E, Soman C, Wagner M R, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture[J]. PLOS Biology, 2017, 15(13): e2001793. [14] Van Loon L C, Bakker P A, Pieterse C M. Systemic resistance induced by rhizosphere bacteria[J]. Annual Review of Phytopathology, 1998, 36(1): 453-483. [15] Fagard M, Dellagi A, Roux C, et al. Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi[J]. Molecular Plant-Microbe Interactions, 2007, 20(7): 794-805. [16] Lu X, Zhou D, Chen X, et al. Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) merr.][J]. Plant and Soil, 2017, 416(1): 53-66. [17] Li Z J, Tang S Y, Gao H S, et al. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis[J]. Plant Cell and Environment, 2023, 47: 337-353. [18] Wei H, Yang M, Ke Y, et al. Comparative physiological and transcriptomic profiles reveal regulatory mechanisms of soft rot disease resistance in Amorphophallus spp[J]. Physiological and Molecular Plant Pathology, 2022, 118: 101807. [19] Zhu M J, Ren S Y, Chen C L, et al. The combined application of Bacillus velezensis BCP6 and Jinggangmycin (JGM) to control soft rot caused by Pectobacterium aroidearum on Amorphophallus konjac[J]. Plant Protection Science, 2024, 60(1): 41-52. [20] Reimand J, Isserlin R, Voisin V, et al. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and Enrichmentmap[J]. Nature Protocols, 2019, 14(2): 482-517. [21] Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data[J]. BMC Bioinformatics, 2013, 14(1):7-7. [22] Li X, Ma Y, Liang S, et al. Comparative genomics of 84Pectobacterium genomes reveals the variations related to a pathogenic lifestyle[J]. BMC Genomics, 2018, 19(1): 889. [23] Liu M, Wu F, Wang S, et al. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage[J]. Horticulture Research, 2019, 6(1): 68. [24] 康星星. 贝莱斯芽孢杆菌CC09防治小麦全蚀病菌侵染的机制[D], 2019. [25] Govrin E M, Levine A. Infection of arabidopsis with a necrotrophic pathogen, botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR)[J]. Plant Molecular Biology, 2002, 48(3): 267-276. [26] Ngou B P M, Ding P, Jones J D G. Thirty years of resistance: Zig-zag through the plant immune system[J]. Plant Cell, 2022, 34(5): 1447-1478. [27] Liu X, Zhang P, Zhao Q, et al. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products[J]. Journal of Integrative Plant Biology, 2023, 65(2): 417-443. [28] Boller T, Felix G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009, 60: 379-406. [29] Pieterse C M J, Does D V D, Zamioudis C, et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 2012, 28(1): 489-521. [30] 于晓庆, 谢华, 王秀玲, 等. 植物软腐病防御反应分子机制研究进展[J]. 中国农业科技导报, 2012, 14(6): 49-53. [31] Thatcher L F, Manners J M, Kazan K. Fusarium oxysporum hijacks COL1-mediated jasmonate signaling to promote disease development in Arabidopsis[J]. The Plant Journal, 2009, 58(6): 927-939. [32] Jin Q, Jiang Q, Zhao L, et al. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities[J]. Journal of Biotechnology, 2017, 259: 199-203. [33] Liu G, Kong Y, Fan Y, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J]. Journal of Biotechnology, 2017, 249: 20-24. [34] Pandin C, Le Coq D, Deschamps J, et al. Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects agaricus bisporus crops against the green mould disease[J]. Journal of biotechnology, 2018, 278: 10-19. [35] Martinez-Medina A, Flors V, Heil M, et al. Recognizing plant defense priming[J]. Trends in Plant Science, 2016, 21(10): 818-822. [36] Ramirez-Prado J S, Abulfaraj A A, Rayapuram N, et al. Plant immunity: From signaling to epigenetic control of defense[J]. Trends in Plant Science, 2018, 23(9): 833-844. [37] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43: 205-227. [38] Heil M, Bostock R M. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences[J]. Annals of Botany, 2002, 89(5): 503-512. |