[1] Singh R P, Singh P K, Rutkoski J, et al. Disease impact on wheat yield potential and prospects of genetic control[J]. Annual Review of Phytopathology, 2016, 54: 303-22. [2] 孙丽华, 李好海, 彭红, 等. 2023年河南省小麦茎基腐病发生概况及重发原因分析[J]. 中国农技推广, 2024, 40(1): 96-98,107. [3] 栾冬冬, 贾吉玉, 王光州, 等. 中国小麦茎基腐病的发生现状及防治策略[J]. 麦类作物学报, 2022, 42(4): 512-520. [4] 李怡文, 李桂香, 黄中乔, 等. 假禾谷镰孢引起的小麦茎基腐病发生危害与防控研究进展[J]. 农药学学报, 2022, 24(5): 949-961. [5] Li H L, Yuan H X, Fu B, et al. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China[J]. Plant Disease, 2012, 96(7): 1065. [6] Zhou H F, He X L, Wang S, et al. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China[J]. Environmental Microbiology, 2019, 21(8): 2740-2754. [7] Deng Y Y, Li W, Zhang P, et al. Fusarium pseudograminearum as an emerging pathogen of crown rot of wheat in eastern China[J]. Plant pathology, 2020, 69(2): 240-248. [8] 闫书味, 白尼玛, 潘鑫, 等. 2022年河南省小麦茎基腐病和赤霉病病原种群分离鉴定[J]. 麦类作物学报, 2024, 44(5): 667-674. [9] Xu F, Yang G Q, Wang J M, et al. Spatial distribution of root and crown rot fungi associated with winter wheat in the north China plain and its relationship with climate variables[J]. Frontiers in Microbiology, 2018, 9: 1054. [10] 纪莉景, 栗秋生, 王连生, 等. 河北省小麦冠腐病发生现状及病原菌初探[J]. 植物保护, 2016, 42(5): 154-157. [11] Obanor F, Neate S, Simpfendorfer S, et al. Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia[J]. Plant Pathology, 2013, 62(1): 79-91. [12] Kazan K, Gardiner D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects[J]. Molecular Plant Pathology, 2018, 19(7): 1547-1562. [13] Powell J J, Carere J, Fitzgerald T L, et al. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.)[J]. Annals of Botany, 2017, 119(5): 853-867. [14] 俞慧友. 30个!中国科协发布2022年科技领域重大问题难题[N]. 科技日报, 2022-06-28(01). [15] Feng C H, Xu F, Li L J, et al. Biological control of Fusarium crown rot of wheat with Chaetomium globosum 12XP1-2-3 and its effects on rhizosphere microorganisms [J]. Frontiers in Microbiology, 2023, 3(14): 1133025. [16] Meng J X, Zan F F, Liu Z R, et al. Genomics analysis reveals the potential biocontrol mechanism of Pseudomonas aeruginosa QY43 against Fusarium pseudograminearum[J]. Journal of Fungi, 2024, 10(4): 298. [17] 张强, 吴利民, 李朋燕, 等. 小麦茎基腐病拮抗菌发酵条件优化及稳定性评价[J]. 河南农业科学, 2023, 52(5): 121-129. [18] 林琪童, 杨丽荣, 夏明聪, 等. 小麦茎基腐病生防菌株YB-161的分离鉴定及防效测定[J]. 植物保护学报, 2020, 47(4): 939-948. [19] 张洁, 汤蒙蒙, 夏明聪, 等. 枯草芽胞杆菌YB-05与申嗪霉素复配防治小麦茎基腐病[J]. 中国生物防治学报, 2018, 34(6): 866-872. [20] 潘娅梅, 夏明聪, 陈瑞雪, 等. 6%井冈霉素·枯草芽胞杆菌可湿性粉剂对小麦茎基腐病的田间防效[J]. 农药, 2021, 60(9): 678-681. [21] 何洋, 彭红, 蔡春木, 等. 多粘类芽胞杆菌(土益康1 号)防治小麦土传病害技术研究[J]. 湖北植保, 2024(1): 46-48, 52. [22] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [23] Chun J, Baek S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2000, 78(2): 123-127. [24] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [25] 王莉莉, 朱凯, 孙莹, 等. 醚菌酯对假禾谷镰孢的抑制作用及对小麦茎基腐病的防效研究[J]. 植物病理学报, 2021, 52(3): 434-442. [26] 庄驯宇. 黄淮麦区主推及新育小麦品种对茎基腐病的抗性鉴定及抗性基因分析[D]. 郑州: 河南农业大学, 2023. [27] Olenska E, Malek W, Wojcik M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review[J]. Science of the Total Environment, 2020, 743: 140682. [28] Blake C, Christensen M N, Kovacs A T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis[J]. Molecular Plant-Microbe Interactions, 2021, 34(1): 15-25. [29] Elkoca E, Kantar F, Sahin F. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea[J]. Journal of Plant Nutrition, 2007, 31: 157-171. [30] Arkhipova T N, Veselov S U, Melentiev A I, et al. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants[J]. Plant and Soil 2005, 272: 201-209. [31] Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 4927-4932. [32] Woo O G, Kim H, Kim J S, et al. Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris[J]. Plant Physiology and Biochemistry, 2020, 148: 359-367. [33] Kumar A S, Lakshmanan V, Caplan J L, et al. RhizoBacteria Bacillus subtilis restricts foliar pathogen entry through stomata[J]. Plant Journal, 2012, 72: 694-706. [34] Luo C P, Zhou H F, Zou J C, et al. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1897-1910. [35] 陈华, 袁成凌, 蔡克周, 等. 枯草芽胞杆菌JA产生的脂肽类抗生素-iturin A的纯化及电喷雾质谱鉴定[J]. 微生物学报, 2008, 1: 116-120. |