[1] Franck P, Gul S A, Mohamed B A,et al.Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen[J]. Phytopathologia Mediterranea, 2016, 55(1): 20-40. [2] Jin J, Shi R, Lewis R S,et al. RNAseq reveals differential gene expression contributing toPhytophthora nicotianae adaptation to partial resistance in tobacco[J]. Agronomy, 2021, 11(4): 656-656. [3] Guo D S, Yuan C H, Luo Y Y,et al. Biocontrol of tobacco black shank disease (Phytophthora nicotianae) byBacillus velezensis Ba168[J]. Pesticide Biochemistry and Physiology, 2020, 165: 104523. [4] 孟建玉, 汪汉成, 贾蒙骜, 等. 贵州省烟草黑胫病菌对甲霜灵的抗药性[J]. 植物保护, 2014, 40(5): 168-171. [5] Cui L K, Gao P F, Guo J L,et al. Mating type and sensitivity ofPhytophthora nicotianae from tobacco to metalaxyl and dimethomorph in Henan province, China[J]. Journal of Phytopathology, 2018, 168(9): 648-653. [6] Antonopoulos D F, Melton T, Mila A L. Effects of chemical control, cultivar resistance, and structure of cultivar root system on black shank incidence of tobacco[J]. Plant Disease, 2010, 94(5): 613-620. [7] 陈志谊, 刘永峰, 刘邮洲, 等. 植物病害生防芽胞杆菌研究进展[J]. 江苏农业学报, 2012, 28(5): 999-1006. [8] 宋文欣. 六株拮抗芽胞杆菌对土传病害病原菌的抑制作用及其生物学特性的初步研究[D]. 南宁: 广西大学, 2020. [9] 孙冰冰, 李伟, 魏军, 等. 生防芽胞杆菌的研究进展[J]. 天津农业科学, 2015, 21(12): 102-107. [10] Pierre N, Ulrike M, Etienne D,et al. Condition-dependent transcriptome reveals high-level regulatory architecture inBacillus subtilis[J]. Science Volume, 2012, 335(6072): 1103-1106. [11] Han T, You C, Zhang L,et al. Biocontrol potential of antagonistBacillus subtilis Tpb55 against tobacco black shank[J]. Biocontrol, 2016, 61(2): 195-205. [12] 马佳, 李颖, 胡栋, 等. 芽胞杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2018, 34(4): 639-648. [13] Abeer H, Baby T, Elsayed F A.Bacillus subtilis : A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019, 26(6): 1291-1297. [14] Jamil S, Hui T, Ji M S.Bacillusspecies as versatile weapons for plant pathogens: a review[J]. Biotechnology & Biotechnological Equipment, 2017, 31(3): 446-459. [15] 石磊, 杜锦锦, 郭庆港, 等. 具分泌几丁质酶活性的生防细菌的筛选鉴定及其几丁质酶基因的克隆和表达[J]. 植物病理学报, 2013, 43(2):149-156. [16] 杨桃. 内生枯草芽胞杆菌Itb57对烟草疫霉菌的抑制机理[D]. 重庆: 西南大学, 2015. [17] 邱思鑫, 何红, 阮宏椿, 等. 内生芽孢杆菌TB2防治辣椒疫病效果及其机理初探[J]. 植物病理学报, 2004, 34(2): 173-179. [18] Peter Z. Management of oxidative stress inBacillus[J]. Annual Review of Microbiology, 63(1): 575-597. [19] Lu H D, Xu H, Yang P P,et al. Transcriptome analysis ofBacillus amyloliquefaciens reveals fructose addition effects on fengycin synthesis[J]. Genes, 2022, 13(6): 984-984. [20] Helmann J D, Wu M F W, Gaballa A,et al. The global transcriptional response ofBacillus subtilis to peroxide stress is coordinated by three transcription factors [J]. Journal of Bacteriology, 2003, 185(1): 243–253. [21] 徐同伟. 烟草黑胫病拮抗菌的筛选、鉴定和生防潜力评价[D]. 北京: 中国农业科学院, 2017. [22] 李豪. 红色糖多孢菌基因组、转录组和GlnR功能研究[D]. 上海: 华东理工大学, 2011. [23] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. [24] 王晓宇, 罗楚平, 陈志谊, 等. 枯草芽胞杆菌Bs-916的全基因组分析[J]. 中国农业科学, 2011, 44(23): 4807-4814. [25] Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359. [26] Dewey C N, Li B. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323. [27] Mahesh H B, Shirke M D, Wang G. L,et al. In planta transcriptome analysis reveals tissue-specific expression of pathogenicity genes and microRNAs during rice-magnaporthe interactions[J]. Genomics, 2021, 113(1): 265-275. [28] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. [29] Qi Z Q, Yu J J, Shen L R,et al. Enhanced resistance to rice blast and sheath blight in rice (Oryza sativaL.) by expressing the oxalate decarboxylase protein Bacisubin fromBacillus subtilis[J]. Plant Science, 2017, 265: 51-60. [30] Koumoutsi A, Chen X H, Henne A,et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides inBacillus amyloliquefaciens strain FZB42[J]. Journal of Bacteriology, 2004, 186(4): 1084-1096. [31] 叶景文. 解淀粉芽胞杆菌ZJ6-6 产生的抗菌脂肽分析及生防机制研究[D]. 广州: 华南农业大学, 2017. [32] Muller P Y, Janovjak H, Miserez A R,et al. Processing of gene expression data generated by quantitative real-time RT-PCR[J]. Biotechniques, 2002, 32(6): 1372-1379. [33] Daniela C S, Gabriela P, Rosa E,et al. Beneficial effect ofBacillussp. P12 on soil biological activities and pathogen control in common bean[J]. Biological Control, 2020,141: 1-8. [34] Blake C, Christensen M N, Kovács Á T. Molecular aspects of plant growth promotion and protection byBacillus subtilis[J]. Molecular Plant-Microbe Interactions, 2021, 34(1): 15-25. [35] Kakar K U, Duan Y P, Nawaz Z,et al. A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused byPseudomonas fuscovaginae and its mode of action[J]. European Journal of Plant Pathology, 2014, 138(4): 819-834. [36] 徐伟芳. 桑树内生枯草芽孢杆菌7PJ-16对桑椹菌核病生防作用及机理的研究[D]. 重庆: 西南大学, 2020. [37] Magdalena K, Bart V, Daniel W,et al. Comparative transcriptome analysis of the biocontrol strainBacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing[J]. Journal of Biotechnology, 2016, 231: 212-223. [38] Richa S, Vivek S. Genome wide underpinning of antagonistic and plant beneficial attributes ofBacillussp. SBA12[J]. Genomics, 2020, 112(4): 2894-2902. [39] Ongena M, Jourdan E, Adam A,et al. Surfactin and fengycin lipopeptides ofBacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environmental Microbiology, 2007, 9(4): 1084-1090. |