[1] Keena M A, Cote M J, Grinberg P S, et al. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera:Lymantriidae)[J]. Environmental Entomology, 2008, 37(3):636-649.
[2] Hallem E A, Dahanukar A, Carlson J R. Insect odor and taste receptors[J]. Annual Review of Entomology, 2006, 51:113-135.
[3] Giese R L, Schneider M L. Cartographic comparisons of Eurasian gypsy moth distribution (Lymantria dispar L.; Lepidoptera:Lymantriidae). Entomological News, 1979, 90(10):1-16.
[4] 萧刚柔. 中国森林昆虫[M]. 北京:中国林业出版社, 1992, 1086-1087.
[5] 王丽珍, 段立清, 特木钦, 等. 寄主植物对舞毒蛾生长发育的影响[J]. 中国森林病虫, 2006, 25(1):21-23.
[6] Sanahuja G, Banakar R, Twyman R M, et al. Bacillus thuringiensis:A century of research, development and commercial applications[J]. Plant Biotechnology Journal, 2011, 9(3):283-300.
[7] Bravo A, Likitvivatanavong S, Gill S, et al. Bacillus thuringiensis:a story of a successful bioinsecticide[J]. Insect Biochemistry and Molecular Biology, 2011, 41(1):1-9.
[8] Swamy H M, Asokan R, Rajasekaran P E, et al. Analysis of opportunities and challenges in patenting of Bacillus thuringiensis insecticidal crystal protein genes[J]. Recent Patents on DNA and Gene Sequences, 2012, 6(1):64-71.
[9] Lee M K, Curtiss A, Alcantara E, et al. Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar[J]. Applied and Environmental Microbiology, 1996, 62(2):583-586.
[10] Dankocsik C, Donovan W P, Jany C S. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity[J]. Molecular Microbiology, 1990, 4(12):2087-2094.
[11] Ohsawa M, Tanaka M, Moriyama K, et al. A 50-kilodalton Cry2A peptide is lethal to Bombyx mori and Lymantria dispar[J]. Applied and Environmental Microbiology, 2012, 78(13):4755-4757.
[12] Wu D, Chang F N. Synergism in mosquitocidal activity of 26 kDa and 65 kDa protein from B. thuringiensis subsp. israelensis crystals[J]. FEMS Microbiology Letters, 1985, 190(2):232-236.
[13] 蔡吉林, 束长龙, 宋福平, 等. 对小菜蛾协同增效的Cry1和Cry9类蛋白组合的筛选[J]. 植物保护, 2013, 39(1):66-70.
[14] Carrière Y, Crickmore N, Tabashnik B E. Optimizing pyramided transgenic Bt crops for sustainable pest management[J]. Nature Biotechnology, 2015, 33:161-168.
[15] Li H, Bouwer G. Evaluation of the synergistic activities of Bacillus thuringiensis Cry proteins against Helicoverpa armigera (Lepidoptera:Noctuidae)[J]. Journal of Invertebrate Pathology, 2014, 121:7-13.
[16] 曹利军, 杨帆, 唐思莹, 等. 适合三种鳞翅目昆虫的一种人工饲料配方[J]. 应用昆虫学报, 2014, 51(5):1376-1386.
[17] Li Y, Shu C L, Zhang X W, et al. Mining rare and ubiquitous toxin genes from a large collection of Bacillus thuringiensis strains[J]. Journal of Invertebrate Pathology, 2014, 122:6-9.
[18] Zhou Z S, Yang S J, Shu C L, et al. Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain[J]. Journal of Integrative Agriculture, 2015, 14(8):1598-1603.
[19] 萨姆布鲁克J, 拉塞尔D W著, 黄培堂译. 分子克隆实验指南(第3版)[M]. 北京:科学出版社, 2002.
[20] Tabashnik B E. Evaluation of synergism among Bacillus thuringiensis toxins[J]. Applied and Environmental Microbiology, 1992, 58(10):3343-3346.
[21] Finney D. Probit Analysis[M]. London:Cambridge University Press, 1971.
[22] 魏纪珍, 梁革梅, 高希武, 等. Cry2Ab及Cry1Ac杀虫蛋白对棉铃虫中肠蛋白酶活性的影响[J]. 应用昆虫学报, 2012, 49(4):839-846.
[23] Tabashnik B E, Timothy J D, Maria A S, et al. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab[J]. Applied and Environmental Microbiology, 2002, 68(8):3790-3794.
[24] Estruch J J, Warren G W, Mullins M A, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11):5389-5394.
[25] Fang J, Xu X L, Wang P, et al. Characterization of chimeric Bacillus thuringiensis Vip3 toxins[J]. Applied and Environmental Microbiology, 2006, 73(3):956-961. |