[1] Abad P, Gouzy J, Aury J M, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology, 2008, 26(8):909-915. [2] 段玉玺. 植物线虫学[M]. 北京:科学出版社, 2011, 135. [3] 彭德良. 蔬菜病虫害的综合治理(十)蔬菜线虫病害的发生和防治[J]. 中国蔬菜, 1998(4):59-60. [4] Cao A, Guo M, Yan D, et al. Evaluation of sulfuryl fluoride as a soil fumigant in China[J]. Pest Management Science, 2014, 70(2):219-227. [5] Yang L L, Huang Y, Liu J, et al. Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles[J]. Antonie van Leeuwenhoek, 2012, 102(1):53-59. [6] Abd-Elgawad M M M, Askary T H. Fungal and bacterial nematicides in integrated nematode management strategies[J]. 2018, 28:74. [7] Hallmann J, Mahaffee W F, Kloepper J W, et al. Bacterial endophytes in agricultural crops[J]. Canadian Journal of Microbiology, 1997, 43(10):895-914. [8] Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts[J]. Molecular Plant-Microbe Interactions, 2006, 19(8):827-837. [9] Santoyo G, Moreno-Hagelsieb G, Del C O M, et al. Plant growth-promoting bacterial endophytes[J]. Microbiological Research, 2016, 183(5):92-99. [10] Hong C E, Park J M. Endophytic bacteria as biocontrol agents against plant pathogens:current state-of-the-art[J]. Plant Biotechnology Reports, 2016, 10(6):353-357. [11] 成飞雪, 王忠勇, 刘勇, 等. 杀线虫苏云金芽胞杆菌菌株YC-10的分离鉴定及活性测定[J]. 中国生物防治学报, 2011, 27(4):540-546. [12] Hallmann J, Quadt-Hallmann A, Rodrıguez-Kabana R, et al. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber[J]. Soil Biology and Biochemistry, 1998, 30(7):925-937. [13] Hallmann J, Mekete T, Sikora R, et al. Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita[J]. Nematology, 2009, 11(1):117-127. [14] Li G J, Dong Q E, Ma L, et al. Management of Meloidogyne incognita on tomato with endophytic bacteria and fresh residue of Wasabia japonica[J]. Journal of Applied Microbiology, 2014, 117(4):1159-1167. [15] Hu H J, Chen Y L, Wang Y F, et al. Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action[J]. Plant Disease, 2017, 101(3):448-455. [16] Mhatre P H, Karthik C, Kadirvelu K, et al. Plant growth promoting rhizobacteria (PGPR):A potential alternative tool for nematodes bio-control[J]. Biocatalysis and Agricultural Biotechnology, 2018, 17:119-128. [17] Gao H, Qi G, Yin R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine[J]. Scientific Reports, 2016, 6:28756. [18] Siddiqui I A, Shaukat S S. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato:importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol[J]. Soil Biology and Biochemistry, 2003, 35(12):1615-1623. [19] De Meyer S E, De Beuf K, Vekeman B, et al. A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium)[J]. Soil Biology and Biochemistry, 2015, 83:1-11. [20] 田丰, 陈立杰, 王媛媛, 等. 根瘤菌Sneb183对大豆胞囊线虫二龄幼虫的作用方式研究[J]. 中国生物防治学报, 2014, 30(4):540-545. [21] 回虹燕, 王媛媛, 朱晓峰, 等. 拮抗线虫的花生根瘤内生细菌筛选及鉴定[J]. 中国油料作物学报, 2016, 38(2):223-229. [22] 刘维宇. 拮抗大豆胞囊线虫生防根瘤菌筛选及环境适应性研究[D]. 沈阳:沈阳农业大学, 2015. [23] 吴红慧, 周俊初. 根瘤菌培养基的优化和剂型的比较研究[J]. 微生物学通报, 2004(2):14-19. [24] Hussey R S, Barker K R. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique[J]. Plant Disease Reporter, 1973, 57:1025-1028. [25] Barker K R. Design of greenhouse and microplot experiments for evaluation of plant resistance to nematodes[M]. Plant Nematology Laboratory Manual, 1985, 103-113. [26] 周守祥. 种子生理知识:第一讲种子活力(续)[J]. 湖北农业科学, 1990(1):40-41. [27] 东秀珠, 蔡妙英. 常用细菌系统鉴定手册[M]. 北京:科学技术出版社, 2001. [28] 吴超群, 杨泽茂, 吴才君, 等. 设施蔬菜根结线虫危害及其防控机制研究进展[J]. 北方园艺, 2018(11):164-172. [29] 江绪文, 李贺勤. 植物内生菌防治植物寄生线虫的研究进展[J]. 生物技术通报, 2014(9):7-12. [30] Hashem M, Abo-Elyousr K A. Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms[J]. Crop Protection, 2011, 30(3):285-292. [31] 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5):789-800. [32] Colagiero M, Rosso L C, Ciancio A. Diversity and biocontrol potential of bacterial consortia associated to root-knot nematodes[J]. Biological Control, 2018, 120:11-16. [33] Zhao J, Liu D, Wang Y, et al. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines[J]. Pest Management Science, 2019, 75(12):3381-3391. [34] Horuz S, Aysan Y. Biological control of watermelon seedling blight caused by Acidovorax citrulli using antagonistic bacteria from the genera Curtobacterium, Microbacterium and Pseudomonas[J]. Plant Protection Science, 2018, 54(3):138-146. [35] Flor-Peregrín E, Azcón R, Martos V, et al. Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato[J]. Biocontrol Science and Technology, 2014, 24(10):1122-1136. [36] Saikia S K, Tiwari S, Pandey R. Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita[J]. Biological Control, 2013, 65(2):225-234. [37] Zhao D, Zhao H, Zhao D, et al. Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease[J]. Biological Control, 2018, 119:12-19. [38] Ben A R A, Jabnoun-Khiareddine H, Nefzi A, et al. Evaluation of the growth-promoting potential of endophytic bacteria recovered from healthy tomato plants[J]. Journal of Horticulture, 2018, 5(2):234. [39] 赵龙飞, 徐亚军, 曹冬建, 等. 溶磷性大豆根瘤内生菌的筛选、抗性及系统发育和促生[J]. 生态学报, 2015, 35(13):4425-4435. [40] 赵龙飞, 徐亚军, 常佳丽, 等. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用[J]. 微生物学报, 2016, 56(6):1009-1021. |