Chinese Journal of Biological Control ›› 2022, Vol. 38 ›› Issue (5): 1325-1333.DOI: 10.16409/j.cnki.2095-039x.2021.09.022
• TECHNICAL REVIEWS • Previous Articles Next Articles
CHANG Doudou1,2, WANG Congli1, LI Chunjie1
Received:
2021-09-23
Published:
2022-10-20
CLC Number:
CHANG Doudou, WANG Congli, LI Chunjie. Advances on the Pathogenic Mechanism of Entompathogenic Nematodes[J]. Chinese Journal of Biological Control, 2022, 38(5): 1325-1333.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2021.09.022
[1] Kaya H K, Gaugler R. Entomopathogenic nematodes[J]. Annual Review Entomology, 1993, 38:181-206. [2] David I S, Selçuk H, ItamarI G. Basic and Applied Research:Entomopathogenic Nematodes[M]. Lacey L A, ed. Microbial Control of Insect and Mite PestsHolland:Academic Press, 2017, 91-105. [3] Dillman A R, Chaston J M, Adams B J, et al. An entomopathogenic nematode by any other name[J]. PLoS Pathogens, 2012, 8(3):e1002527. [4] Brivio M F, Toscano A, De Pasquale, et al. Surface protein components from entomopathogenic nematodes and their symbiotic bacteria:effects on immune responses of the greater wax moth, Galleria mellonella(Lepidoptera:Pyralidae)[J]. Pest Management Science, 2018, 74(9):2089-2099. [5] Castillo J C, Reynolds S E, Eleftherianos I. Insect immune responses to nematode parasites[J]. Trends in Parasitology, 2011, 27(12):537-547. [6] Li X Y, Cowles R S, Cowles E A, et al. Relationship between the successful infection by entomopathogenic nematodes and the host immune response[J]. International Journal for Parasitology, 2007, 37(3/4):365-374. [7] Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster[J]. Annual Review of Immunology, 2007, 25:697-743. [8] Hoffffmann J A. The immune response of Drosophila[J]. Nature, 2003, 426:33-38. [9] Brivio M F, Mastore M. Nematobacterial complexes and insect hosts:different weapons for the same war[J]. Insects, 2018, 9(3):117. [10] Allen J E, MacDonald A S. Profound suppression of cellular proliferation mediated by the secretions of nematodes[J]. Parasite Immunology, 1998, 20(5):241-247. [11] Burman M. Neoaplectana carpocapsae:toxin production by axenic insect parasitic nematodes[J]. Nematologica, 1982, 28:62-70. [12] Banerjee J, Singh J, Joshi M C, et al. The cytotoxic fimbrial structural subunit of Xenorhabdus nematophila is a pore-forming toxin[J]. Journal of Bacteriology, 2006, 188(22):7957-7962. [13] Forst S, Dowds B, Boemare N, et al. Xenorhabdus and Photorhabdus spp.:bugs that kill bugs[J]. Annual Review of Microbiology, 1997(51):47-72. [14] 王立霞,杨怀文,黄大昉.昆虫病原线虫共生细菌致病机理研究进展[J].微生物学报, 2000, 40(4):448-451. [15] 丛斌,王希华,王洪平.昆虫病原线虫的共生细菌[J].中国病毒学, 2000, 15:24-30. [16] 王立霞,杨秀芬,简恒,等.昆虫病原线虫共生细菌的代谢产物[J].微生物学报, 2001, 41(6):753-756. [17] Han R C, Ehlers R U. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions[J]. Journal of Invertebrate Pathology, 2000, 75:55-58. [18] Lunau S, Stoessel S, Schmidt-Peisker A J, et al. Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp[J]. Nematologica, 1993, 39:385-399. [19] Han R C, Ehlers R U. Cultivation of axenic Heterorhabditis spp. dauer juveniles and their response to non-specifific Photorhabdus luminescens food signals[J]. Nematologica, 1998, 44:425-435. [20] Hallem E A, Rengarajan M, Ciche T A, et al. Nematodes, bacteria, and flies:a tripartite model for nematode parasitism[J]. Current Biology, 2007, 17(10):898-904. [21] Eleftherianos I, Joyce S, Ffrench-Constant R H, et al. Probing the tri-trophic interaction between insects, nematodes and Photorhabdus[J]. Parasitology, 2010, 137(11):1695-1706. [22] Wang Y, Campbell J F, Gaugler R. Infection of entomopathogenic nematodes Steinernema glaseri and Heterorhabditis bacteriophora against Popillia japonica(Coleoptera, Scarabaeidae) larvae[J]. Journal of Invertebrate Pathology, 1995, 66:178-184. [23] Bowen D, Rocheleau T A, Blackburn M, et al. Insecticidal toxins from the bacterium Photorhabdus luminescens[J]. Science, 1998, 280:2129-2132. [24] Muhammad M, Platzer E, Gaugler R. Role of the surface coat of Romanomermis culicivorax in immune evasion[J]. Nematology, 2007, 9:17-24. [25] Blaxter M L, Page A P, Rudin W, et al. Nematode surface coats:actively evading immunity[J]. Parasitology Today, 1992, 8(7):243-247. [26] Mastore M, Brivio M F. Cuticular surface lipids are responsible for disguise properties of an entomoparasite against host cellular responses[J]. Developmental and Comparative Immunology, 2008, 32:1050-1062. [27] Wang Y, Gaugler R. Steinernema glaseri surface coat protein suppresses the immune response of Popillia japonica(Coleoptera:Scarabaeidae) larvae[J]. Biological Control, 1999, 14:45-50. [28] Dunphy G B, Webster J M. Partially characterized components of the epicuticle of dauer juvenile Steinernema feltiae and their influence on hemocyte activity in Galleria mellonella[J]. Journal of Parasitology, 1987, 73:584-588. [29] Brivio M F, Pagani M, Restelli S. Immune suppression of Galleria mellonella(Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae(Nematoda, Rhabditida):involvement of the parasite cuticle[J]. Experimental Parasitology, 2002, 101:149-156. [30] Brivio M F, Mastore M, Moro M. The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions[J]. Molecular& Biochemical Parasitology, 2004, 135:111-121. [31] Brivio M F, Mastore M, Moro M. Down-regulation of antibacterial peptide synthesis in an insect model induced by the body-surface of an entomoparasite (Steinernema feltiae)[J]. Developmental and Comparative Immunology, 2006, 30:627-638. [32] Lu D H, Macchietto M, Chang D, et al. Activated entomopathogenic nematode infective juveniles release lethal venom proteins[J]. PLoS Pathogens, 2017, 13(4):e1006302. [33] Wang Y, Gaugler R, Cui L W. Variations in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species[J]. Journal of Nematology, 1994, 26(1):11-18. [34] 刘华.格式线虫表皮免疫抑制蛋白的研究[D].北京:中国农业科学院, 2012. [35] 刘华,姚庆,袁京京,等.不同培养基上繁殖的昆虫病原线虫格氏线虫表皮蛋白的差异[J].昆虫学报, 2011, 54(12):1348-1353. [36] 刘劲,刘华.格氏线虫表皮蛋白和分泌蛋白抑制昆虫免疫活性的比较[J].中国生物防治学报, 2012, 28(3):400-407. [37] Garriga A, Mastore M, Morton A, et al. Immune response of Drosophila suzukii larvae to infection with the nematobacterial complex steinernema Carpocapsae-Xenorhabdus nematophila[J]. Insects, 2020, 11(4):210. [38] Toubarro D, Avila M M, Hao Y J, et al. A serpin released by an entomopathogen impairs clot formation in insect defense system[J]. PLoS ONE, 2013, 8(7):e69161. [39] Jing Y, Toubarro D, Hao Y, et al. Cloning, characterisation and heterologous expression of an astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae[J]. Molecular& Biochemical Parasitology, 2010, 174(2):101-108. [40] Balasubramanian N, Nascimento G, Ferreira R, et al. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae[J]. Gene, 2012, 500(2):164-171. [41] McKerrow J H. Parasite proteases[J]. Experimental Parasitology, 1989, 68:111-115. [42] Balasubramanian N, Hao Y J, Toubarro D, et al. Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae[J]. International Journal for Parasitology, 2009, 39:975-984. [43] Hao Y J, Montiel R, Nascimento G, et al. Identification and expression analysis of the Steinernema carpocapsae elastase-like serine protease gene during the parasitic stage[J]. Experimental Parasitology, 2009, 122(1):51-60. [44] Toubarro D, Lucena-Robles M, Nascimento G, et al. An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae[J]. International Journal for Parasitology, 2009, 39:1319-1330. [45] Toubarro D, Lucena-Robles M, Nascimento G, et al. Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae[J]. The Journal of Biological Chemistry, 2010, 285(40):30666-30675. [46] Balasubramanian N, Toubarro D, Simoes N. Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematode Steinernema carpocapsae[J]. Parasite Immunology, 2010, 32(3):165-175. [47] Balasubramanian N, Toubarro D, Nascimento G, et al. Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage[J]. Molecular& Biochemical Parasitology, 2012, 182(1/2):37-44. [48] Toubarro D, Avila M M, Montiel R, et al. A pathogenic nematode targets recognition proteins to avoid insect defenses[J]. PLoS ONE, 2013, 8(9):e75691. [49] Chang D Z, Serra L, Lu D H, et al. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema[J]. PLoS Pathogens, 2019, 15(5):e1007626. [50] Alonso V, Nasrolahi S, Dillman A R. Host-Specific activation of entomopathogenic nematode infective juveniles[J]. Insects, 2018, 9(2):59. [51] Bedding R A, Molyneux A S. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp.(Heterorhabditidae:Nematoda)[J]. Nematologica 1982, 28(3):354-359. [52] Eleftherianos I, ffrench-Constant R H, Clarke D J, et al. Dissecting the immune response to the entomopathogen Photorhabdus[J]. Trends in Microbiology, 2010, 18(12):552-560. [53] Ciche T. The biology and genome of Heterorhabditis bacteriophora[M]//The C. elegans Research Community ed, Wormbook. 2007, 1-9. DOI:10.1895/wormbook.1.135.1(http://www.wormbook.org) [54] Campbell L R, Gaugler R. Mechanisms for exsheathment of entomopathogenic nematodes[J]. International Journal for Parasitology, 1991, 21(2):219-224. [55] Peters A, Gouge D H, Ehlers R U, et al. Avoidance of encapsulation by Heterorhabditis spp. infecting larvae of Tipula oleracea[J]. Journal of Invertebrate Pathology, 1997, 70(2):161-164. [56] Yi Y H, Wu G Q, Lv J L, et al. Eicosanoids mediate Galleria mellonella immune response to hemocoel injection of entomopathogenic nematode cuticles[J]. Parasitology Research, 2016, 115(2):597-608. [57] Bai X, Adams B J, Ciche T A, et al. A lover and a fighter:the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora[J]. PLoS ONE, 2013, 8(7):e69618. [58] Adhikari B N, Lin C Y, Bai X, et al. Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora[J]. BMC Genomics, 2009, 10:609. [59] Vadnal J, Ratnappan R, Keaney M, et al. Identification of candidate infection genes from the model entomopathogenic nematode Heterorhabditis bacteriophora[J]. BMC Genomics, 2017, 18:8. [60] Moshayov A, Koltai H, Glazer I. Molecular characterisation of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora[J]. International Journal for Parasitology, 2013, 43(10):843-852. [61] Hao Y J, Montiel R, Lucena M A, et al. Genetic diversity and comparative analysis of gene expression between Heterorhabditis bacteriophora Az29 and Az36 isolates:Uncovering candidate genes involved in insect pathogenicity[J]. Experimental Parasitology, 2012, 130(2):116-125. [62] Kenney E, Hawdon J M, O'Halloran D M. Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes[J]. International Journal for Parasitology, 2021, 51(5):321-325. [63] Jarosz J, Boemare N, Caj C. The anti-cecropin agent contributes to insecticidal nature of Heterorhabditis bacteriophora[C]//VIth International Colloquium on Invertebrate Pathology and Microbial Control, University of Montpellier, Aug.28-Sept. 2, Montpellier, France, 1994, 261-263. [64] Jarosz J. Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insect immunity[J]. Parasitology, 1998, 117(3):201-208. [65] Kenney E, Hawdon J M, O'Halloran D, et al. Heterorhabditis bacteriophora excreted-secreted products enable infection by Photorhabdus luminescens through suppression of the lmd pathway[J]. Frontiers in Immunology, 2019, 10:2372. [66] Kenney E, Yaparla A, Hawdon J M, et al. A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling[J]. Scientific Reports, 2020, 10(1):12312. [67] Kenney E, Yaparla A, Hawdon J M, et al. A putative lysozyme and serine carboxypeptidase from Heterorhabditis bacteriophora show differential virulence capacities in Drosophila melanogaster[J]. Developmental and Comparative Immunology, 2021, 114:103820. [68] Eliáš S, Hurychová J, Toubarro D, et al. Bioactive excreted/secreted products of entomopathogenic nematode Heterorhabditis bacteriophora inhibit the phenoloxidase activity during the infection[J]. Insects, 2020, 11(6):353. [69] Noguez J H, Conner E S, Zhou Y, et al. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora[J]. ACS Chemical Biology, 2012, 7(6):961-966. [70] Baiocchi T, Abd-Elgawad M M M, Dillman A R. Genetic improvement of entomopathogenic nematodes for enhanced biological control[M]//Abd-Elgawad M M M, Askary T H, Coupland J, eds. Biocontrol Agents:Entomopathogenic and Slug Parasitic Nematodes. CABI, 2017, 505-517. [71] 王杰,戴康,孔祥鑫,等.昆虫病原线虫与环境生物、非生物因素关系的研究进展[J].环境昆虫学报, 2021, 43(4):811-839. |
[1] | NIE Jianhua, ZHANG Lihang, ZHANG Mingming, GUO Lihua, CHEN Wei, WANG Shuangchao. Mechanisms of Mycovirus Attenuating Pathogenicity of Host Fungi and Its Application in Biological Control [J]. Chinese Journal of Biological Control, 2022, 38(4): 951-958. |
[2] | CHENG Yin, ZHENG Jiyang, WANG Dun. Isolation and Identification of Three Beauveria bassiana Isolates and Their Virulence against Mythimna separata under Laboratory Condition [J]. Chinese Journal of Biological Control, 2022, 38(2): 521-530. |
[3] | TIAN Chengli, LI Maohai, LIU Jinwen, ZHANG Jinhua, ZHU Feng, LI Jianping. Identification and Biological Characteristics of Entomopathogenic Nematode JLSY 003 [J]. Chinese Journal of Biological Control, 2021, 37(3): 480-485. |
[4] | CHEN Xiangrong, XU Caixia, HAN Dubin, ZHAO Ming, ZHOU Fucai. Control of Bemisia tabaci in Pepper by Steinernema carpocapsae [J]. Chinese Journal of Biological Control, 2021, 37(1): 110-116. |
[5] | HUANG Peng, YAO Jinai, YU Deyi, HOU Xiangyu. Identification and Pathogenicity of Entomopathogenic Fungi BB-T02 against Two Thrip Species [J]. Chinese Journal of Biological Control, 2020, 36(6): 929-937. |
[6] | SU Zaotang, ZHANG Lingying, XU Tianmei, DU Guangzu, CHEN Bin, XIAO Guanli. Isolation, Identification and Insecticidal Activity of Pathogenic Serratia marcescens from Potato Tuber Moth Larvae [J]. Chinese Journal Of Biological Control, 2020, 36(3): 361-370. |
[7] | LIN Zhijian, XIA Zhihui, Gu Gang, Zhou Ting, HU Fangping, CAI Xueqing. Screening of Avirulent Ralstonia solanacearum Strain to Culture Bacteriophage and Its Application [J]. journal1, 2018, 34(6): 906-913. |
[8] | LI Jingjing, WANG Fei, YAO Hongwei, YE Gongyin. Research Advances on RNA Viruses in Parasitoid Wasps [J]. journal1, 2018, 34(6): 914-922. |
[9] | WANG Bin, CAO Na, GHULAM Ali Bugti. Laboratory Assessment on Virulence of Isaria fumosorosea against Multiple Species of Sucking Insects [J]. journal1, 2018, 34(1): 86-91. |
[10] | FU Junrui, LIU Qizhi, LI Xingyue. Isolation and Pathogenicity of Symbiotic Bacteriua associated with the Entomopathogenic Nematode Heterorhabditis beicherriana [J]. journal1, 2018, 34(1): 133-140. |
[11] | CHEN Xianqun, LIU Qizhi, CAO Jingfu, WEI Taiyang, SHI Yan, GUO Lei. Evaluation of Two Entomopathogenic Nematode Species for Control of Batocera lineolata on Walnut Trees [J]. journal1, 2016, 32(4): 456-461. |
[12] | ZHANG Haijian, Song Jian, Du Lixin, YANG Yunhe, SHI Jie. Control Efficacy of One Microsporidian against Athetis lepigone Larvae [J]. journal1, 2016, 32(4): 462-467. |
[13] | HU Jue, GU Xingshi, LI Shunji, HUANG Guohua. Infection Characterization by Spodoptera frugiper ascovirus Isolate 84?36 and Growing Development of Infected Spodoptera exigua Larvae [J]. journal1, 2016, 32(2): 189-195. |
[14] | HU Benjin, XU Lina, HU Fei, ZHOU Ziyan, LI Changchun. Screening of Highly Pathogenic Strains of Beauveria bassiana against Sesamia inferens [J]. , 2015, 31(2): 280-283. |
[15] | ZHANG Zhaorong, ZHANG Yanjun, XIE Ming. Identification and Biological Characteristics of a Lecanicillium Isolate Originating from Tropic Region and Its Pathogenicity against Bemisia tabaci [J]. , 2015, 31(1): 64-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||