Chinese Journal of Biological Control ›› 2022, Vol. 38 ›› Issue (4): 951-958.DOI: 10.16409/j.cnki.2095-039x.2022.04.012
• RESEARCH REPORTS • Previous Articles Next Articles
NIE Jianhua1,2, ZHANG Lihang2, ZHANG Mingming2,3, GUO Lihua2, CHEN Wei1, WANG Shuangchao2
Received:
2022-06-30
Published:
2022-08-11
CLC Number:
NIE Jianhua, ZHANG Lihang, ZHANG Mingming, GUO Lihua, CHEN Wei, WANG Shuangchao. Mechanisms of Mycovirus Attenuating Pathogenicity of Host Fungi and Its Application in Biological Control[J]. Chinese Journal of Biological Control, 2022, 38(4): 951-958.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2022.04.012
[1] Xie J T, Wei D M, Jiang D H, et al. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum[J]. The Journal of General Virology, 2006, 87(1):241-249. [2] Xie J T, Xiao X Q, Fu Y P, et al. A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum[J]. Virology, 2011, 418(1):49-56. [3] Hu Z J, Wu S S, Cheng J S, et al. Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum[J]. Virology, 2014,(464-465):450-459. [4] Xiao X Q, Cheng J S, Tang J H, et al. A novel partitivirus that confers hypovirulence on plant pathogenic fungi[J]. Virology, 2014, 88(17):10120-10133. [5] Xie J T, Ghabrial S A. Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum[J]. Virology, 2012, 428(2):77-85. [6] Khalifa M E, Pearson M N. Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus[J]. Virology, 2013, 441(1):22-30. [7] Mu F, Jia J C, Xue Y X, et al. Characterization of a novel botoulivirus isolated from the phytopathogenic fungus Sclerotinia sclerotiorum[J]. Archives of Virology, 2021, 166(10):2859-2863. [8] Azhar A, Mu F, Huang H, et al. A novel RNA virus related to sobemoviruses confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum[J]. Viruses, 2019, 11(8):759. [9] Yu X, Li B P, Fu Y H, et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18):8387-8392. [10] Anagnostakis S L. Biological control of chestnut blight[J]. Science, 1982, 215(4532):466-471. [11] Hillman B I, Halpern B T, Brown M P. A viral dsRNA element of the chestnut blight fungus with a distinct genetic organization[J]. Virology, 1994, 201(2):241-250. [12] Smart C D, Yuan W, Foglia R, et al. Cryphonectria hypovirus 3, a virus species in the family hypoviridae with a single open reading frame[J]. Virology, 1999, 265(1):66-73. [13] Linder-Basso D, Dynek J N, Hillman B I. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America[J]. Virology, 2005, 337(1):192-203. [14] Wang S C, Kondo H, Liu L, et al. A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum[J]. Virus Research, 2013, 174(1):69-77. [15] Li P F, Zhang H L, Chen X G, et al. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum[J]. Virology, 2015, 481:151-160. [16] Liu S, Xie J T, Cheng J S, et al. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45):12803-12808. [17] Allen T D, Nuss D L. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses[J]. Journal of Virology, 2004, 78(8):4145-4155. [18] Wang S C, Li P F, Zhang J Z, et al. Generation of a high resolution map of sRNAs from Fusarium graminearum and analysis of responses to viral infection[J]. Scientific Reports, 2016, 6:26151. [19] Lee Marzano S Y, Neupane A, Domier L. Transcriptional and small RNA responses of the white mold fungus Sclerotinia sclerotiorum to infection by a virulence-attenuating hypovirus[J]. Viruses, 2018, 10(12):713. [20] Li H, Fu Y P, Jiang D H, et al. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus[J]. Virus Research, 2008, 135(1):95-106. [21] Gao Z X, Wu J Y, Jiang D H, et al. ORF Ι of mycovirus SsNSRV-1 is associated with debilitating symptoms of Sclerotinia sclerotiorum[J]. Viruses, 2020, 12(4):456. [22] Wang J Z, Wang F Z, Feng Y J, et al. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus[J]. Journal of Proteomics, 2013, 78:221-230. [23] Lax C, Tahiri G, Patiño-Medina J A, et al. The evolutionary significance of RNAi in the fungal kingdom[J]. International Journal of Molecular Sciences, 2020, 21(24):9348. [24] Segers G C, Van Wezel R, Zhang X, et al. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system[J]. Eukaryotic Cell, 2006, 5(6):896-904. [25] Yaegashi H, Shimizu T, Ito T, et al. Differential inductions of RNA silencing among encapsidated bouble-stranded RNA mycoviruses in the white root rot fungus Rosellinia necatrix[J]. Journal of Virology, 2016, 90(12):5677-5692. [26] Yu J, Park J Y, Heo J I, et al. The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences[J]. Molecular Plant Pathology, 2020, 21(2):230-243. [27] Aulia A, Hyodo K, Hisano S, et al. Identification of an RNA silencing suppressor encoded by a symptomless fungal hypovirus, Cryphonectria Hypovirus 4[J]. Biology, 2021, 10(2):100. [28] Andika I B, Jamal A, Kondo H, et al. SAGA complex mediates the transcriptional up-regulation of antiviral RNA silencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17):3499-3506. [29] Sun Q, Choi G H, Nuss D L. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42):17927-17932. [30] Yaegashi H, Yoshikawa N, Ito T, et al. A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix[J]. Biology, Virology,2013, 444(1):409-416. [31] Park S M, Choi E S, Kim M J, et al. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress[J]. Molecular Microbiology, 2004, 51(5):1267-1277. [32] Choi E S, Chung H J, Kim M J, et al. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica[J]. Microbiology, 2005, 151(5):1349-1358. [33] Parsley T B, Chen B, Geletka L M, et al. Differential modulation of cellular signaling pathways by mild and severe hypovirus strains[J]. Eukaryotic Cell, 2002, 1(3):401-413. [34] Yu J H. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans[J]. Journal of Microbiology, 2006, 44(2):145-154. [35] Choi G H, Chen B, Nuss D L. Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(1):305-309. [36] Ding F, Cheng J S, Fu Y P, et al. Early transcriptional response to DNA virus infection in Sclerotinia sclerotiorum[J]. Viruses, 2019, 11(3):278. [37] Wu S S, Cheng J, Fu Y, et al. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses[J]. PLoS Pathogens, 2017, 13(3):1006234. [38] Qu Z, Fu Y P, Lin Y, et al. Transcriptional responses of Sclerotinia sclerotiorum to the infection by SsHADV-1[J]. Journal of Fungi, 2021, 7(7):493. [39] Wang J Z, Shi L M, He X P, Lu L, et al. Comparative secretome analysis reveals perturbation of host secretion pathways by a hypovirus[J]. Scientific Reports, 2016, 6(1):34308. [40] Anagnostakis S L. Biological control of chestnut blight[J]. Science, 1982, 215(4532):466-471. [41] 张林巧,高坤,邓清超,等.低毒病毒CHV1-CN280生防潜力的初步研究[J].中国生物防治学报, 2012, 28(1):80-86. [42] Krstin L, Katanić Z, Ježić M, et al. Biological control of chestnut blight in Croatia:an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1[J]. Pest Management Science, 2017, 73(3):582-589. [43] Xiong Q, Zhang L Q, Waletich J, et al. Characterization of the papain-like protease p29 of the hypovirus CHV1-CN280 in its natural host fungus Cryphonectria parasitica and nonhost fungus Magnaporthe oryzae[J]. Phytopathology, 2019, 109(5):736-747. [44] Yu X, Li B, Fu Y P, et al. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4):1452-1457. [45] Mochama P, Jadhav P, Neupane A, et al. Mycoviruses as triggers and targets of RNA silencing in white mold fungus Sclerotinia sclerotiorum[J]. Viruses, 2018, 10(4):214. [46] 吴松松,郑丹,李波,等.核盘菌病毒与寄主互作的分子机制研究[C].中国菌物学会, 2017:14. [47] Zhang H X, Xie J T, Fu Y P, et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement[J]. Molecular Plant, 2020, 13(10):1420-1433. [48] Qu Z, Zhao H H, Zhang H X, et al. Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed[J]. NPJ Biofilms and Microbiomes, 2020, 6(1):45. [49] Tian B N, Xie J T, Fu Y P, et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases[J]. The ISME Journal, 2020, 14(12):3120-3135. [50] Choi G H, Dawe A L, Churbanov A, et al. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica[J]. Genetics, 2012, 190(1):113-127. [51] Hamid M R, Xie J, Wu S, et al. A novel deltaflexivirus that infects the plant fungal pathogen, Sclerotinia sclerotiorum, can be transmitted among host vegetative incompatible strains[J]. Viruses, 2018, 10(6):295. |
[1] | YUAN Menglei, FAN Lele, ZHAO Xue, ZHONG Zengming, SUN Manhong, LI Shidong. Control of Root-Knot Nematode in Cucumber with Purpureocillium lilacinum Microsclerotia and Effects of Soil Factors on Fungal Colonization [J]. Chinese Journal of Biological Control, 2022, 38(4): 831-839. |
[2] | WANG Jiahao, HONG Yuxin, LI Congcong, WU Boming. Effect of High Soil Temperature and Low Oxygen Level on Survival of Sclerotinia sclerotiorum Sclerotia and Change of Soil Microbe Community [J]. Chinese Journal of Biological Control, 2022, 38(4): 929-938. |
[3] | JI Yutong, XUE Chuanzhen, WANG Mengqing, XIANG Mei, LI Ping, LI Yuyan, MAO Jianjun, ZHANG Lisheng. Effects of Relative Humidity on Development of Picromerus lewisi Scott [J]. Chinese Journal of Biological Control, 2022, 38(4): 975-981. |
[4] | SONG Xinna, Mei Feng zhen, LI Xiangfeng, ZHU Yingbo, SHI Fengyu, LIU Jianbin. Screening and Control Effect of Antagonistic Bacteria against Strawberry Fusarium Wilt [J]. Chinese Journal of Biological Control, 2022, 38(3): 653-661. |
[5] | MENG Suling, TIAN Yanmei, GU Xin, SUN Xiaohan, WANG Xinpu. Research Progress on Synergistic Disease Prevention by Trichoderma [J]. Chinese Journal of Biological Control, 2022, 38(3): 739-747. |
[6] | WANG Yanan, LI Ping, HE Weiwei, ZHANG Maosen, WANG Mengqing, MAO Jianjun, ZHANG Lisheng, LI Yuyan. Predation of the Eggs and Young Larvae of Spodoptera litura by the Third Instar Larvae of Chrysopa formosa [J]. Chinese Journal of Biological Control, 2022, 38(2): 321-327. |
[7] | ZHENG Yanan, ZHANG Yanlong, SHI Yong, FAN Lichun, LI Yang. Preliminary study on the control efficiency of Monochamus saltuarius by Sclerodermus spp. [J]. Chinese Journal of Biological Control, 2022, 38(2): 306-311. |
[8] | LI Lei, ZHANG Lei, ZHAO Zongxiang, WANG Mengru, LI Shiguang. Compatibility of Metiarium flavoride with Trans-Anethole and Their Cotoxicity to Pieris rapae [J]. Chinese Journal of Biological Control, 2022, 38(2): 349-359. |
[9] | FU Liyuan, CAI Ruijie, FENG Zhimin, SONG Xinna, ZHU Yingbo, SHI Fengyu, LIU Jianbin. Screening of Biocontrol Bacillus spp. and Its Suppression Efficacy on Grape Gray Mold [J]. Chinese Journal of Biological Control, 2022, 38(2): 440-446. |
[10] | MIAO Chengqi, ZHAO Yancun, BAO Yan, LING Jun, LIU Jiayu, LI Chaohui, LIU Fengquan. Screening, Identification and Biocontrol Potential of Bacillus altitudinis ST15 against Xanthomonas oryzae [J]. Chinese Journal of Biological Control, 2022, 38(2): 458-468. |
[11] | CHENG Yin, ZHENG Jiyang, WANG Dun. Isolation and Identification of Three Beauveria bassiana Isolates and Their Virulence against Mythimna separata under Laboratory Condition [J]. Chinese Journal of Biological Control, 2022, 38(2): 521-530. |
[12] | LI Hongmei, WANG Junya, ZHUO Fuyan, ZHU Jingquan, TU Xiongbing, ZHANG Guocai, BELINDA Luke. Review on the Occurrence and Management Technology of Ceracris kiangsu in China [J]. Chinese Journal of Biological Control, 2022, 38(2): 531-536. |
[13] | MA Juan, Guo Xiaoxiao, LI Xiuhua, WANG Rongyan, GAO Bo, CHEN Shulong. Tolerance of Different Entomopathogenic Nematodes to Environmental Stresses [J]. Chinese Journal of Biological Control, 2022, 38(1): 188-195. |
[14] | KANG Kui, CAI Youjun, GONG Jun, ZHANG Daowei. Effects of Metarhizium anisopliae on the Fecundity of Nilaparvata lugens [J]. Chinese Journal of Biological Control, 2022, 38(1): 180-187. |
[15] | FU Zhenshi, TANG Siqiong, SU Jie, CHEN Jing, ZHANG Jianping. Influence of Three Insecticides (Acaricides) on Predation Function of Neoseiulus bicaudus [J]. Chinese Journal of Biological Control, 2022, 38(1): 42-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||