[1] Fisher M C, Hawkins N J, Sanglard D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science, 2018, 360(6390):739-742. [2] Sharma R R, Singh D, Singh R, et al. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists:a review[J]. Biological Control, 2009, 50(3):205-221. [3] Grenier B, Applegate T J. Modulation of intestinal functions following mycotoxin ingestion:meta-analysis of published experiments in animals[J]. Toxins, 2013, 5(2):396-430. [4] 王治文,高翔,马德君,等.核酸农药——极具潜力的新型植物保护产品[J].农药学学报, 2019, 21(Z1):681-691. [5] Huang C J, Qian Y J, Li Z H, et al. Virus-induced gene silencing and its application in plant functional genomics[J]. Science China-Life Sciences, 2012, 55(2):99-108. [6] Koch A, Wassenegger M. Host-induced gene silencing-mechanisms and applications[J]. New Phytologist, 2021, 231(1):54-59. [7] Head G P, Carroll M W, Evans S P, et al. Evaluation of SmartStax and SmartStaxPRO maize against western corn rootworm and northern corn rootworm:efficacy and resistance management[J]. Pest Management Science, 2017, 79(9):1883-1899. [8] Vetukuri R R, Dubey M, Kalyandurg P B, et al. Spray-induced gene silencing:an innovative strategy for plant trait improvement and disease control[J]. Crop Breeding and Applied Biotechnology, 2021, 21:e387921S11. [9] Bramlett M, Plaetinck G, Maienfisch P. RNA-based biocontrols-a new paradigm in crop protection[J]. Engineering, 2020, 6(5):522-527. [10] Qiao L, Lan C, Capriotti L, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnology Journal, 2021, 19(9):1756-1768. [11] Romano N, Macino G. Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences[J]. Molecular Microbiology, 1992, 6(22):3343-3353. [12] Chang S S, Zhang Z, Liu Y. RNA interference pathways in fungi:mechanisms and functions[J]. Annual Review of Microbiology, 2012, 66(1):305-323. [13] Lax C, Tahiri G, Patiño-Medina J A, et al. The Evolutionary significance of RNAi in the fungal kingdom[J]. International Journal of Molecular Sciences, 2020, 21(24):9348. [14] 赵轩,邓竞,马潇雨,等.真菌中RNA干扰的生物学功能[J].微生物学报, 2021, 62(5):1565-1668. [15] Trieu T A, Calo S, Nicolás F, et al. A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi[J]. PLoS Genetics, 2015, 11(4):e1005168. [16] Drinnenberg I A, Fink G R, Bartel D P. Compatibility with killer explains the rise of RNAi-deficient fungi[J]. Science, 2011, 333(6049):1592-1592. [17] Laurie J D, Ali S, Linning R, et al. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements[J]. The Plant Cell, 2012, 24(5):1733-1745. [18] Yadav V, Sun S, Billmyre R B, et al. RNAi is a critical determinant of centromere evolution in closely related fungi[J]. Proceedings of the National Academy of Sciences, 2018, 115(12):3108. [19] 高沥文,陈世国,张裕,等.基于RNA干扰的生物农药的发展现状与展望[J].中国生物防治学报, 2022, 38(3):700-715. [20] Wang M, Jin H. Spray-induced gene silencing:a powerful innovative strategy for crop protection[J]. Trends in Microbiology, 2017, 25(1):4-6. [21] Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391:806-811. [22] Whangbo J S, Hunter C P. Environmental RNA interference[J]. Trends in Genetics, 2008, 24(6):297-305. [23] Chitwood D H, Timmermans M C P. Small RNAs are on the move[J]. Nature, 2010, 467(7314):415-419. [24] Winston W M, Molodowitch C, Hunter C P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science, 2002, 295(5564):2456-2459. [25] McEwan D L, Weisman A S, Huntert C P. Uptake of extracellular double-stranded RNA by SID-2[J]. Molecular Cell, 2012, 47(5):746-754. [26] Wang M, Weiberg A, Lin F-M, et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature plants, 2016, 2:16151-16151. [27] Wytinck N, Sullivan D S, Biggar K T, et al. Clathrin mediated endocytosis is involved in the uptake of exogenous double-stranded RNA in the white mold phytopathogen Sclerotinia sclerotiorum[J]. Scientific Reports, 2020, 10(1):12773. [28] Kettles G J, Hofinger B J, Hu P, et al. sRNA profiling combined with gene function analysis reveals a lack of evidence for cross-kingdom RNAi in the wheat-Zymoseptoria tritici Pathosystem[J]. Frontiers in Plant Science, 2019, 10:892. [29] Shimizu T, Yaegashi H, Ito T, et al. Systemic RNA interference is not triggered by locally-induced RNA interference in a plant pathogenic fungus, Rosellinia necatrix[J]. Fungal Genetics and Biology, 2015, 76:27-35. [30] Bennett M, Deikman J, Hendrix B, et al. Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells[J]. Frontiers in Plant Science, 2020, 11:816. [31] Nazim U M, Kim J Y. Intercellular and systemic spread of RNA and RNAi in plants[J]. WIREs RNA, 2013, 4(3):279-293. [32] Weiberg A, Wang M, Lin F M, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 2013, 342(6154):118-123. [33] Zhang T, Zhao Y L, Zhao J H, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature plants, 2016, 2(10):16153. [34] Baulcombe D C. VIGS, HIGS and FIGS:small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts[J]. Current Opinion in Plant Biology, 2015, 26:141-146. [35] Wang M, Weiberg A, Dellota E, et al. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi[J]. RNA Biology, 2017, 14(4):421-428. [36] Wang B, Sun Y, Song N, et al. Puccinia striiformis f. sp. tritici microRNA-like RNA 1(Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene[J]. New Phytologist, 2017, 215(1):338-350. [37] Nowara D, Gay A, Lacomme C, et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 2010, 22(9):3130-3141. [38] Panwar V, Mccallum B, Bakkeren G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus[J]. Plant Molecular Biology, 2013, 81(6):595-608. [39] Koch A, Kumar N, Weber L, et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48):19324-19329. [40] Jahan S N, M.Å A K, Pádraic C, et al. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans[J]. Journal of Experimental Botany, 2015(9):2785-2794. [41] Vega-Arreguín J, Jalloh A, Bos J I, et al. Recognition of an avr3a homologue plays a major role in mediating nonhost resistance to Phytophthora capsici in Nicotiana species[J]. Molecular Plant-Microbe Interactions, 2014, 27(8):770-780. [42] Mumbanza F M, Kiggundu A, Tusiime G, et al. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis[J]. Pest Management Science, 2013, 69(10):1155-1162. [43] Koch, Biedenkopf, Furch, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery[J]. Plos Pathogens, 2016, 12(10):e1005901. [44] Höfle L, Biedenkopf D, Werner B T, et al. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes[J]. RNA Biology, 2020, 17(4):463-473. [45] Gu K X, Song X S, Xiao X M, et al. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance[J]. Pesticide Biochemistry and Physiology, 2019, 153:36-46. [46] Mosa M A, Youssef K. Topical delivery of host induced RNAi silencing by layered double hydroxide nanosheets:An efficient tool to decipher pathogenicity gene function of Fusarium crown and root rot in tomato[J]. Physiological and Molecular Plant Pathology, 2021, 115:101684. [47] McLoughlin A G, Wytinck N, Walker P L, et al. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea[J]. Scientific Reports, 2018, 8(1):7320. [48] Nerva L, Sandrini M, Gambino G, et al. Double-stranded RNAs (dsRNAs) as a sustainable tool against gray mold (Botrytis cinerea) in grapevine:effectiveness of different application methods in an open-air environment[J]. Biomolecules, 2020, 10(2):200. [49] Forster H, Shuai B. Exogenous siRNAs against chitin synthase gene suppress the growth of the pathogenic fungus Macrophomina phaseolina[J]. Mycologia, 2020, 112(4):699-710. [50] Sundaresha S, Sharma S, Bairwa A, et al. Spraying of dsRNA molecules derived from Phytophthora infestans, as a plant protection strategies for the management of potato late blight[J]. Pest Management Science, 2022, 78(7):3183-3192. [51] Werner B T, Gaffar F Y, Schuemann J, et al. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance[J]. Frontiers in Plant Science, 2020, 11:476. [52] Song X S, Gu K X, Duan X X, et al. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing[J]. Molecular Plant Pathology, 2018, 19(12):2543-2560. [53] Hu D, Chen Z Y, Zhang C, et al. Reduction of Phakopsora pachyrhizi infection on soybean through host-and spray-induced gene silencing[J]. Molecular Plant Pathology, 2020, 21(6):794-807. [54] 冯丹丹,邓蕾,汪祖鹏,等.寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展[J].植物科学学报, 2021, 39(3):316-323. [55] Guan R, Chu D, Han X, et al. Advances in the development of microbial double-stranded RNA production systems for application of RNA interference in agricultural pest control[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:753790. [56] Dalakouras A, Wassenegger M, McMillan J N, et al. Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs[J]. Frontiers in Plant Science, 2016, 7:1327. [57] Dalakouras A, Jarausch W, Buchholz G, et al. Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption[J]. Frontiers in Plant Science, 2018, 9:1253. [58] Mitter N, Worrall E A, Robinson K E, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature plants, 2017, 3(2):16207. [59] Dietz-Pfeilstetter A, Mendelsohn M, Gathmann A, et al. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection[J]. Frontiers in Plant Science, 2021, 12:974. [60] Olivier C, Teodora D, Kaloyan K, et al. Literature review of baseline information on RNAi to support the environmental risk assessment of RNAi-based GM plants[J]. Efsa Supporting Publications, 2018, 15(5):EN-1424. [61] Rank A P, Koch A. Lab-to-field transition of RNA spray applications-how far are we?[J]. Frontiers in Plant Science, 2021, 12:755203. |