[1] Futai K. Pine wood nematode, Bursaphelenchus xylophilus[J]. Annual Review of Phytopathology, 2013, 51: 61-83. [2] 董瀛谦, 阎合, 潘佳亮, 等. 我国松材线虫病防控对策[J]. 中国森林病虫, 2022, 41(4): 1-8. [3] 郭进, 葛明华, 顾晓峰. 我国松材线虫病的主要防治技术探析[J]. 现代园艺, 2017, 21(11): 139-140. [4] 张弘弢, 赵宇, 牛犇, 等. 生防细菌杀松材线虫的作用机制及应用[J]. 中国森林病虫, 2021, 40(4): 26-33. [5] 许嘉麟, 谈家金, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株对松材线虫产卵和繁殖的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 209-214. [6] Oh M, Han J W, Lee C, et al. Nematicidal and plant growth-promoting activity of Enterobacter asburiae HK169: genome analysis provides insight into its biological activities[J]. Journal of Microbiology and Biotechnology, 2018, 28(6): 968-975. [7] Kang M K, Kim J H, Liu M J, et al. New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020[J]. Scientific Reports, 2022, 12(1): 3947. [8] Marques-pereira C, Proenca D N, Morais P V. The role of serratomolide-like amino lipids produced by bacteria of genus Serratia in nematicidal activity[J]. Pathogens, 2022, 11(2): 198. [9] Borrajo M P, Mondino E A, Maroniche G A, et al. Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica[J]. Revista Argentina de microbiologia, 2022, 54(3): 224-232. [10] Pires D, Vicente C S L, Menendez E, et al. The fight against plant-parasitic nematodes: current status of bacterial and fungal biocontrol agents[J]. Pathogens, 2022, 11(10): 1178. [11] Hu H, Gao Y, Li X, et al. Identification and nematicidal characterization of proteases secreted by endophytic Bacteria Bacillus cereus BCM2[J]. Phytopathology, 2020, 110(2): 336-344. [12] Waksman G, Hultgren S J. Structural biology of the chaperone-usher pathway of pilus biogenesis[J]. Nature Reviews Microbiology, 2009, 7(11): 765-774. [13] 张加雪. 肺炎克雷伯氏菌NTUH-K2044中转录调控子RcsAB对ECP菌毛相关基因的调控研究[D]. 重庆: 重庆医科大学, 2021. [14] Rendon M A, Saldana Z, Erdem A L, et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10637-10642. [15] Avelino F, Saldana Z, Islam S, et al. The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells[J]. International Journal of Medical Microbiology, 2010, 300(7): 440-448. [16] Blackburn D, Husband A, Saldana Z, et al. Distribution of the Escherichia coli common pilus among diverse strains of human enterotoxigenic E. coli[J]. Journal of Clinical Microbiology, 2009, 47(6): 1781-1784. [17] Saldana Z, Erdem A L, Schuller S, et al. The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli[J]. Journal of Bacteriology, 2009, 191(11): 3451-61. [18] Lehti T A, Bauchart P, Heikkinen J, et al. Mat fimbriae promote biofilm formation by meningitis associated Escherichia coli[J]. Microbiology, 2020, 156(8): 2408-2417. [19] Werneburg G T, Thanassi D G. Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella[J]. EcoSal Plus, 2018, 8(1): 10.1128. [20] Rossez Y, Holmes A, Lodberg-Pedersen H, et al. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants[J]. The Journal of Biological Chemistry, 2014, 289(49): 34349-34365. [21] 高晓蓉, 朱丽晖, 周玉嫚. 菲降解菌Pseudomonas sp. JM2-gfp细胞特性对生物膜形成能力的影响及其在植物根表的定殖[J]. 微生物学通报, 2021, 48(11): 4019-4029. [22] 姚骏磊. 多粘类芽孢杆菌生物膜形成机制及定殖研究[D]. 杭州: 浙江农林大学, 2019. [23] Olsen A, Jonsson A, Normark S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli[J]. Nature, 1989, 338(6217): 652-655. [24] Harshey R M, Kawagishi I, Maddock J, et al. Function, diversity, and evolution of signal transduction in prokaryotes[J]. Developmental Cell, 2003, 4(4): 459-465. [25] Pijper A. Bacterial flagella and motility[J]. Nature, 1948, 161(4084): 200. [26] Mattick J S. Type IV pili and twitching motility[J]. Annual Review of Microbiology, 2002, 56(1): 289-314. [27] Kilmury S L N, Burrows L L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities[J]. mBio, 2018, 9(4): e01310-18. [28] Niu B, Paulson J N, Zheng X, et al. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): 2450-2459. [29] 张弘弢. 路德维希肠杆菌AA4杀松材线虫相关基因的挖掘及其功能的初步解析[D]. 哈尔滨: 东北林业大学, 2021. [30] 牛犇, 史亚新, 赵宇, 等. 一株防治松材线虫病的寡养单胞菌LC00168及其应用. 中国: CN112877240B [P]. 2021. [31] Tomich M, Planet P J, Figurski D H. The tad locus: postcards from the widespread colonization island[J]. Nature Reviews Microbiology, 2007, 5(5): 363-375. [32] Saldaña Z, De la Cruz M A, Carrillo-Casas E M, et al. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium[J]. PLoS ONE, 2014, 9(7): e101200. [33] Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nature Reviews Microbiology, 2004, 2(2): 95-108. [34] Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: a common cause of persistent infections[J]. Science, 1999, 284(5418): 1318-1322. [35] List C, Grutsch A, Radler C, et al. Genes activated by Vibrio cholerae upon exposure to Caenorhabditis elegans reveal the mannose-sensitive hemagglutinin to be essential for colonization[J]. mSphere, 2018, 3(3): e00238-18. [36] Gupta S, Kumar P, Rathi B, et al. Targeting of uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC[J]. Scientific Reports, 2021, 11(1): 17801. [37] Yi X, Yamazaki A, Biddle E, et al. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii[J]. Molecular Microbiology, 2010, 77(3): 787-800. [38] Mondal R, Saldaña-Ahuactzi Z, Soria-Bustos J, et al. The EcpD tip adhesin of the Escherichia coli common pilus mediates binding of Enteropathogenic E. coli to extracellular matrix proteins[J]. International Journal of Molecular Sciences, 2022, 23(18): 10350. [39] Huang Y T, Cheng J F, Liu Y T, et al. Genome-based analysis of virulence determinants of a Serratia marcescens strain from soft tissues following a snake bite[J]. Future Microbiology, 2018, 13: 331-343. |