[1] 韩君,范怀峰,王海娜,等.防治灰霉病药剂的开发进展[J].农药研究与应用, 2011(3):5-10. [2] 董金荣,王玉楼,吉同銮,等.保护地番茄主要病害综合防治技术初探[J].安徽农学通报, 2011, 17(16):104, 158. [3] 李宝聚,朱国仁,关天舒,等.节能日光温室中番茄灰霉病发生规律的研究[J].植物保护, 2003, 29(2):26-29. [4] Barret M, Morrissey J P, O'Gara F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence[J]. Biology and Fertility of Soils, 2011, 47(7):729-743. [5] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319. [6] Chu F, Kearns D B, Branda S S, et al. Targets of the master regulator of biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2006, 59(4):1216-1228. [7] Bai U, Mandic-Mulec I, Smith I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction[J]. Genes& Development, 1993, 7(1):139-148. [8] Chu F, Kearns D B, Mcloon A, et al. A novel regulatory protein governing biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2008, 68(5):1117-1127. [9] Kearns D B, Chu F, Branda S S, et al. A master regulator for biofilm formation by Bacillus subtilis[J]. Molecular Microbiology, 2005, 55(3):739-749. [10] Jiang C H, Liao M J, Wang H K, et al. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea[J]. Biological Control, 2018, 126:S466746282. [11] Romero D, de Vicente A, Rakotoaly R H, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. Molecular Plant-Microbe Interactions, 2007, 20(4):430-440. [12] Davey M E, O'Toole G A. Microbial biofilms:from ecology to molecular genetics[J]. Microbiology and Molecular Biology Reviews, 2000, 64(4):847. [13] Gryczan T J, Contente S, Dubnau D. Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis[J]. Journal of Bacteriology, 1978, 134(1):318-329. [14] Kearns D B, Chu F, Rudner R, et al. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility[J]. Molecular Microbiology, 2004, 52(2):357-369. [15] Chu F, Kearns D B, Mcloon A, et al. A novel regulatory protein governing biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2008, 68(5):1117-1127. [16] Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, et al. Fruiting body formation by Bacillus subtilis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20):11621-11626. [17] Chen Y, Cao S, Chai Y, et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants[J]. Molecular Microbiology, 2012, 85(3):418-430. [18] Chen Y, Yan F, Chai Y, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation[J]. Environmental Microbiology, 2013, 15(3):848-864. [19] Gueroutfleury A M, Frandsen N, Stragier P. Plasmids for ectopic integration in Bacillus subtilis[J]. Gene, 1996, 180(1-2):57-61. [20] Morikawa M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species[J]. Journal of Bioscience& Bioengineering, 2006, 101(1):1-8. [21] Chen Y, Cao S, Chai Y, et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants[J]. Molecular Microbiology, 2012, 85(3):418-430. [22] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319. [23] 张虎,肖静,原梨萍,等. spoIIE基因缺失对克劳氏芽孢杆菌淀粉酶酶活的影响[J].食品工业科技, 2019, 40(1):131-135. |