Chinese Journal of Biological Control ›› 2025, Vol. 41 ›› Issue (2): 473-491.DOI: 10.16409/j.cnki.2095-039x.2024.07.007
• TECHNICAL REVIEWS • Previous Articles
SUN Xingxing1,2,3, JIANG Yingjie3, WANG Fan3, ZHANG Lisheng1,2
Received:
2024-03-05
Published:
2025-04-19
CLC Number:
SUN Xingxing, JIANG Yingjie, WANG Fan, ZHANG Lisheng. Research Progress and Prospect of DNA Barcoding in Parasitoid Wasps[J]. Chinese Journal of Biological Control, 2025, 41(2): 473-491.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2024.07.007
[1] Yao J, Xie C, He Y, et al. Investigation on hymenopterous parasitoids of Bactrocera dorsalis (Hendel) in Guangdong[J]. Journal of Environmental Entomology, 2008, 30: 350-356. [2] Gutierrez-Arellano D, Gutierrez-Arellano C R, Zaldivar-Riveron A. DNA barcoding of the parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) from Chamela, Mexico[J]. Biodiversity Data Journal J, 2015(3): e5109. [3] Zaldívar-Riverón A, Martínez J J, Ceccarelli F S, et al. DNA barcoding a highly diverse group of parasitoid wasps (Braconidae: Doryctinae) from a Mexican nature reserve[J]. Mitochondrial DNA, 2010, 21(s1): 18-23. [4] Muirhead K A, Murphy N P, Sallam M N, et al. Mitochondrial DNA phylogeography of the Cotesia flavipes complex of parasitic wasps (Hymenoptera: Braconidae)[J]. Annales de la Société entomologique de France (N.S.), 2013, 42(3/4): 309-318. [5] Franck P, Maalouly-Matar M, Olivares J. Molecular tools for the detection and the identification of Hymenoptera parasitoids in Tortricid fruit pests[J]. International Journal of Molecular Sciences, 2017, 18(10): 2031. [6] Li J, Liu B, Pan H, et al. Buckwheat strip crops increase parasitism of Apolygus lucorum in cotton[J]. BioControl, 2019, 64: 645-654. [7] Gariepy T D, Haye T, Zhang J. A molecular diagnostic tool for the preliminary assessment of host-parasitoid associations in biological control programmes for a new invasive pest[J]. Molecular Ecology, 2014, 23(15): 3912-24. [8] Suchan T, Espíndola A, Rutschmann S, et al. Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study[J]. Molecular Phylogenetics and Evolution, 2017, 114: 189-198. [9] Murphy N, Banks J C, Whitfield J B, et al. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage[J]. Molecular Phylogenetics and Evolution, 2008, 47(1): 378-395. [10] Quicke D L J, Alex Smith M, Janzen D H, et al. Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera: Ichneumonoidea): data release and new measure of taxonomic congruence[J]. Molecular Ecology Resources, 2012, 12(4): 676-685. [11] Klopfstein S, Kropf C, Baur H. Wolbachia endosymbionts distort DNA barcoding in the parasitoid wasp genus Diplazon (Hymenoptera: Ichneumonidae)[J]. Zoological Journal of the Linnean Society, 2016, 177(3): 541-557. [12] Smith M A, Rodriguez J J, Whitfield J B, et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12359-12364. [13] Rougerie R, Smith M A, Fernandez-Triana J, et al. Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid wasps reveal larval host[J]. Molecular Ecology, 2011, 20(1): 179-186. [14] Li Y, Zhou X, Feng G, et al. COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae)[J]. Molecular Ecology Resources, 2010, 10(1): 31-40. [15] Shokralla S, Porter T M, Gibson J F, et al. Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform[J]. Scientific Reports, 2015, 5(1): 9687. [16] Haran J, Delvare G, Vayssieres J F, et al. Increasing the utility of barcode databases through high-throughput sequencing of amplicons from dried museum specimens, an example on parasitic hymenoptera (Braconidae)[J]. Biological Control, 2018, 122: 93-100. [17] Davis M J, Andersen J C, Elkinton J. Identification of the parasitoid community associated with an outbreaking gall wasp, Zapatella davisae, and their relative abundances in New England and Long Island, New York[J]. Ecology and Evolution, 2019, 9(1): 19-25. [18] Ceccarelli F S, Sharkey M J, Zaldívar-Riverón A. Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach[J]. Molecular Phylogenetics and Evolution, 2012, 62(1): 485-495. [19] Veijalainen A, Wahlberg N, Broad G R, et al. Unprecedented ichneumonid parasitoid wasp diversity in tropical forests[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1748): 4694-4698. [20] Muirhead K A, Murphy N P, Sallam N, et al. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers[J]. Molecular Phylogenetics and Evolution, 2012, 63(3): 904-914. [21] Turčinavičienė J, Radzevičiūtė R, Budrienė A, et al. Species identification and genetic differentiation of European cavity-nesting wasps (Hymenoptera: Vespidae, Pompilidae, Crabronidae) inferred from DNA barcoding data[J]. Mitochondrial DNA Part A, 2016, 27(1): 476-482. [22] Alex Smith M, Fernández-Triana J L, Eveleigh E, et al. DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 20000 sequences[J]. Molecular Ecology Resources, 2013, 13(2): 168-176. [23] Peterson M A, Dobler S, Holland J, et al. Behavioral, molecular, and morphological evidence for a hybrid zone between Chrysochus auratus and C. cobaltinus (Coleoptera: Chrysomelidae)[J]. Annals of the Entomological Society of America, 2001, 94(1): 1-9. [24] Baer C, Tripp D, Bjorksten T, et al. Phylogeography of a parasitoid wasp (Diaeretiella rapae): no evidence of host-associated lineages[J]. Molecular Ecology, 2004, 13(7): 1859-1869. [25] Kambhampati S, Völkl W, Mackauer M. Phylogenetic relationships among genera of Aphidiinae (Hymenoptera: Braconidae) based on DNA sequence of the mitochondrial 16S rRNA gene[J]. Systematic Entomology, 2001, 25: 437-445. [26] Quicke D L J, Fagan-Jeffries E P, Jasso-Martínez J M, et al. A molecular phylogeny of the parasitoid wasp subfamily Rogadinae (Ichneumonoidea: Braconidae) with descriptions of three new genera[J]. Systematic Entomology, 2021, 46(4): 1019-1044. [27] Andrew D, Nature D. Extraction and PCR of DNA from parasitoid wasps that have been chemically dried[J]. Australian Journal of Entomology, 1997, 36(3):241-244. [28] Kambhampati S, Smith P T. PCR primers for the amplification of four insect mitochondrial gene fragments[J]. Insect Molecular Biology, 1995, 4(4): 233-6. [29] Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J]. Annals of the Entomological Society of America, 1994, 87(6): 651-701. [30] Ye Z, Vollhardt I M G, Tomanovic Z, et al. Evaluation of three molecular markers for identification of European primary parasitoids of cereal aphids and their hyperparasitoids[J]. PLoS ONE, 2017, 12(5): e0177376. [31] 何佳春. 中国南方稻区半翅目害虫寄生蜂多样性及黄腿双距螯蜂生物学特性的研究[D]. 贵州: 贵州大学, 2022.. [32] Smith P T, Kambhampati S, Völkl W, et al. A phylogeny of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) inferred from mitochondrial NADH 1 dehydrogenase gene sequence[J]. Molecular Phylogenetics and Evolution, 1999, 112: 236-245. [33] Wagener B, Reineke A, Löhr B, et al. Phylogenetic study of Diadegma species (Hymenoptera: Ichneumonidae) inferred from analysis of mitochondrial and nuclear DNA sequences[J]. Biological Control, 2006, 37(2): 131-140. [34] Campbell B C, Steffen-Campbell J D, Werren J H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences[J]. Insect Molecular Biology, 1993, 2(4): 225-37. [35] Quicke D L J, Mori M, Zaldivar-Riverón A, et al. Suspended mummies in Aleiodes species (Hymenoptera: Braconidae: Rogadinae) with descriptions of six new species from western Uganda based largely on DNA sequence data[J]. Journal of Natural History, 2006, 40(47/48): 2663-2680. [36] Veen F J F V, Belshaw R, Charles Godfray H J. The value of the ITS2 region for the identification of species boundaries between Alloxysta hyperparasitoids (Hymenoptera: Charipidae) of aphids[J]. European Journal of Entomology, 2003, 100(3): 449-453. [37] Darwell C T, Al-Beidh S, Cook J M. Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity[J]. BMC Evolutionary Biology, 2014, 14(1): 1-10. [38] Schwarzfeld M, Sperling F. Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae)[J]. ZooKeys, 2014, 462: 59-114. [39] Mueller R L. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in bayesian phylogenetic analysis[J]. Systematic Biology, 2006, 55(2): 289-300. [40] Luan Y, Zhang Y, Yue Q, et al. Ribosomal DNA gene and phylogenetic relationships of Diplura and lower hexapods[J]. Science China-life Sciences, 2003, 46(1): 67-76. [41] Fernandez-Triana J, Smith M A, Boudreault C, et al. A poorly known high-latitude parasitoid wasp community: Unexpected Diversity and Dramatic Changes through Time[J]. PLoS ONE, 2011, 6(8): 1-8. [42] Davis M J, Andersen J C, Elkinton J. Identification of the parasitoid community associated with an outbreaking gall wasp and their relative abundances in New England and Long Island, New York[J]. Ecology and Evolution, 2019, 9(1): 19-25. [43] Gebiola M, Garonna A P, Bernardo U, et al. Molecular phylogenetic analyses and morphological variation point to taxonomic problems among four genera of parasitoid doryctine wasps (Hymenoptera: Braconidae)[J]. Invertebrate Systematics, 2015, 29(6): 591-609. [44] Schwarzfeld M D, Broad G R, Sperling F A H. Molecular phylogeny of the diverse parasitoid wasp genus Ophion Fabricius (Hymenoptera: Ichneumonidae: Ophioninae)[J]. Systematic Entomology, 2016, 41(1): 191-206. [45] Banks J C, Whitfield J B. Dissecting the ancient rapid radiation of microgastrine wasp genera using additional nuclear genes[J]. Molecular Phylogenetics and Evolution, 2006, 41(3): 690-703. [46] Hines H, Cameron S, Williams P. Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus ) with insights into gene utility for lower-level analysis[J]. Invertebrate Systematics, 2006, 20: 289-303. [47] Lucky A, Sarnat E. Biogeography and diversification of the Pacific ant genus Lordomyrma Emery (Hymenoptera: Formicidae)[J]. Journal of Biogeography, 2010, 37: 624-634. [48] Derocles S A P, Le Ralec A, Plantegenest M, et al. Identification of molecular markers for DNA barcoding in the Aphidiinae (Hym. Braconidae)[J]. Molecular Ecology Resources, 2012, 12(2): 197-208. [49] Kocić K, Petrović A, Čkrkić J, et al. Phylogenetic relationships and subgeneric classification of European Ephedrus species (Hymenoptera, Braconidae, Aphidiinae)[J]. ZooKeys, 2019, 878: 1-22. [50] Belshaw R, Quicke D L J. A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae)[J]. Molecular Phylogenetics and evolution, 1997, 7(3): 281-293. [51] Powell C, Caleca V, Sinno M, et al. Barcoding of parasitoid wasps (Braconidae and Chalcidoidea) associated with wild and cultivated olives in the western cape of South Africa[J]. Genome, 2019, 62(3): 183-199. [52] 李倩. 基于线粒体基因组的膜翅目茧蜂科(Hymenoptera:Braconidae)比较基因组学与系统发育研究[D]. 杭州: 浙江大学, 2014. [53] 刘爽. DNA条形码和生命表技术在瓜蚜/寄生蜂相关研究中的应用[D]. 北京: 北京农学院, 2018. [54] Coquilleau M P, Hoffmann A A, Malipatil M B, et al. Molecular identification of hymenopteran parasitoids and their endosymbionts from agromyzids[J]. Bulletin of Entomological Research, 2023, 113(4): 481-496. [55] Babcock C, Heraty J M. Molecular markers distinguishing Encarsia formosa and Encarsia luteola (Hymenoptera: Aphelinidae)[J]. Annals of the Entomological Society of America, 2000, 93(4): 738-744. [56] 沙仁高娃, 李子聪, 朱丽得孜·艾山. 中国大棒缨小蜂属Litus Haliday一新种记述(膜翅目:缨小蜂科)[J]. 云南农业大学学报(自然科学), 2023, 38(1): 47-52. [57] 努日耶·木合太尔. DNA条形码在新疆北部主要农区赤眼蜂科和缨小蜂科(膜翅目: 小蜂总科)分类研究中的应用[D]. 乌鲁木齐: 新疆大学, 2020. [58] 努日耶·木合太尔, 陈光辉, 彭杰, 等. 玉米叶蝉缨翅缨小蜂Anagrus dmitrievi(膜翅目, 缨小蜂科)DNA条形码研究[J]. 应用昆虫学报, 2021, 58(2): 335-346. [59] Šigut M, Kostovčík M, Šigutová H, et al. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host–parasitoid interactions[J]. PLoS ONE, 2017, 12(12): e0187803. [60] Veijalainen A, Broad G R, Wahlberg N, et al. DNA barcoding and morphology reveal two common species in one: Pimpla molesta stat. rev. separated from P. croceipes (Hymenoptera, Ichneumonidae)[J]. ZooKeys, 2011(124): 59-70. [61] Fagan-Jeffries E P, Cooper S J B, Bertozzi T, et al. DNA barcoding of microgastrine parasitoid wasps (Hymenoptera: Braconidae) using high-throughput methods more than doubles the number of species known for Australia[J]. Molecular Ecology Resources, 2018, 18(5): 1132-1143. [62] Höcherl A, Shaw M R, Boudreault C, et al. Scratching the tip of the iceberg: integrative taxonomy reveals 30 new species records of Microgastrinae (Braconidae) parasitoid wasps for Germany, including new Holarctic distributions[J]. ZooKeys, 2024, 1188: 305-386. [63] Tomić M, Tomanović Ž, Kavallieratos N G, et al. Morphological variability of several biotypes of Ephedrus plagiator (Nees, 1811) (Hymenoptera: Braconidae: Aphidiinae) and description of a new species[J]. Zoologischer Anzeiger-A Journal of Comparative Zoology, 2005, 244(2): 153-162. [64] Desneux N, Starý P, Delebecque C J, et al. Cryptic species of parasitoids attacking the soybean aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae)[J]. Annals of the Entomological Society of America, 2009, 102(6): 925-936. [65] Barahoei H, Madjdzadeh S, Mehrparvar M. Morphometric differentiation of five biotypes of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae) in Iran[J]. Zootaxa, 2011, 2745: 43-52. [66] 周青松. DNA条形码在寄生蜂鉴定中(昆虫纲: 膜翅目)的应用研究[D]. 合肥: 安徽大学, 2014. [67] Stahlhut J K, Fernández-Triana J, Adamowicz S J, et al. DNA barcoding reveals diversity of Hymenoptera and the dominance of parasitoids in a sub-arctic environment[J]. BMC Ecology, 2013, 13(1): 2. [68] Wirta H K, Hebert P D, Kaartinen R, et al. Complementary molecular information changes our perception of food web structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1885-90. [69] Traugott M, Bell J, Broad G, et al. Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community[J]. Molecular Ecology, 2008, 17: 3928-3938. [70] Derocles S A P, Le Ralec A, Besson M M, et al. Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats[J]. Molecular Ecology, 2014, 23(15): 3900-3911. [71] Derocles S A P, Evans D M, Nichols P C, et al. Determining plant-leaf miner-parasitoid interactions: A DNA barcoding approach[J]. PLoS ONE, 2015, 10(2): e0117872. [72] 陈翠. 蚜虫与小蜂的宏进化格局及两种蚜虫的寄生蜂多样性[D]. 福州: 福建农林大学, 2018. [73] 朱玉麟. 农田景观组成对华北棉田蚜虫—寄生蜂食物网结构的影响[D]. 长春: 吉林农业大学, 2019. [74] Yang F, Liu B, Zhu Y, et al. Species diversity and food web structure jointly shape natural biological control in agricultural landscapes[J]. Communications Biology, 2021, 4(1): 979. [75] Varennes Y D, Boyer S, Wratten S. Un-nesting DNA Russian dolls-the potential for constructing food webs using residual DNA in empty aphid mummies[J]. Molecular Ecology, 2014, 23(15): 3925-3933. [76] Dedeine F, Dupont S, Guyot S, et al. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci[J]. Molecular Phylogenetics and Evolution, 2016, 94: 778-790. [77] 魏书军. 膜翅目线粒体基因组的特征与进化及其在系统发育研究中的应用[D]. 杭州: 浙江大学, 2009. [78] Gupta A, Venkatesan T, More R P. Morphological and molecular characterization of reared parasitoid wasps of the genus Glyptapanteles Ashmead 1904(Insecta: Hymenoptera: Braconidae: Microgastrinae) associated with Lepidoptera in India[J]. PLoS ONE, 2016, 11(3): e0150765. [79] Funk D J, Omland K E. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA[J]. Annual Review of Ecology, Evolution, and Systematics, 2003, 34(1): 397-423. [80] Toews D P L, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals[J]. Molecular Ecology, 2012, 21(16): 3907-3930. [81] Ács Z, Challis R J, Bihari P, et al. Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palaearctic[J]. Molecular Phylogenetics and Evolution, 2010, 55(1): 210-225. [82] Tribull C. Phylogenetic relationships among the subfamilies of Dryinidae (Hymenoptera, Chrysidoidea) as reconstructed by molecular sequencing[J]. Journal of Hymenoptera Research, 2015, 45: 15-29. [83] Delgado-Machuca N, Meza-Lázaro R N, Romero-Nápoles J, et al. Genetic structure, species limits and evolution of the parasitoid wasp genus Stenocorse (Braconidae: Doryctinae) based on nuclear 3RAD and mitochondrial data[J]. Systematic Entomology, 2020, 45(1): 33-47. [84] Gerth M, Geißler A, Bleidorn C. Wolbachia infections in bees (Anthophila) and possible implications for DNA barcoding[J]. Systematics and Biodiversity, 2011, 9(4): 319-327. [85] Charlat S, Duplouy A, Hornett E A, et al. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina[J]. BMC Evolutionary Biology, 2009, 9(1): 64. [86] Hale L R, Hoffmann A A. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of drosophila simulans[J]. Evolution, 1990, 44: [87] 王宁新. 内共生菌Wolbachia对Ficus hispida榕小蜂线粒体基因的影响[D]. 济南: 山东农业大学, 2009. [88] Nicholls J A, Challis R J, Mutun S, et al. Mitochondrial barcodes are diagnostic of shared refugia but not species in hybridizing oak gallwasps[J]. Molecular Ecology, 2012, 21(16): 4051-4062. [89] Magnacca K N, Brown M J. DNA barcoding a regional fauna: Irish solitary bees[J]. Molecular Ecology Resources, 2012, 12(6): 990-8. [90] Magnacca K N, Brown M J. Tissue segregation of mitochondrial haplotypes in heteroplasmic Hawaiian bees: implications for DNA barcoding[J]. Molecular Ecology Resources, 2010, 10(1): 60-68. [91] Fagan-Jeffries E P, Cooper S J B, Bradford T M, et al. Intragenomic internal transcribed spacer 2 variation in a genus of parasitoid wasps (Hymenoptera: Braconidae): implications for accurate species delimitation and phylogenetic analysis[J]. Insect Molecular Biology, 2019, 28(4): 485-498. [92] Slater-Baker M-R, Austin A D, Whitfield J B, et al. First record of miracine parasitoid wasps (Hymenoptera: Braconidae) from Australia: molecular phylogenetics and morphology reveal multiple new species[J]. Austral Entomology, 2022, 61(1): 49-67. [93] Talavera G, Dincă V, Vila R. Factors affecting species delimitations with the GMYC model: insights from a butterfly survey[J]. Methods in Ecology and Evolution, 2013, 4(12): 1101-1110. [94] Schwarzfeld M D, Sperling F A H. Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae)[J]. Molecular Phylogenetics and Evolution, 2015, 93: 234-248. [95] 陈锦贤. 基于DNA条形码和形态学的崇明岛摇蚊科(昆虫纲: 双翅目)分类研究[D]. 上海: 上海海洋大学, 2022. [96] 郑新芳. 中国等距姬蜂属系统学研究(膜翅目:姬蜂科)[D]. 广州: 华南农业大学, 2020. [97] 杨兰. 楔缘金小蜂属分子系统发育研究初探(膜翅目: 小蜂总科: 金小蜂科)[D]. 石家庄: 河北大学, 2020. [98] Derocles S A P, Plantegenest M, Rasplus J Y, et al. Are generalist Aphidiinae (Hym. Braconidae) mostly cryptic species complexes?[J]. Systematic Entomology, 2016, 41(2): 379-391. [99] Klopfstein S, Kropf C, Quicke D L J. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of diplazontinae (Hymenoptera, Ichneumonidae)[J]. Systematic Biology, 2010, 592: 226-41. [100] Holterman M, Van Der Wurff A, Van Den Elsen S, et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades[J]. Molecular Biology and Evolution, 2006, 23(9): 1792-1800. [101] 申洁. 中国瘿蜂科部分属种DNA条形码及系统发育研究[D]. 杭州: 浙江农林大学, 2016. [102] 邵天玉, 刘思竹, 谢维欣, 等. DNA条形码技术在黑龙江地区姬小蜂科物种鉴定中的应用与分析[J]. 安徽农业科学, 2023, 51(5): 78-84,88. [103] Babcock C S, Heraty J M, De Barro P J, et al. Preliminary phylogeny of Encarsia Förster (Hymenoptera: Aphelinidae) based on morphology and 28S rDNA[J]. Molecular Phylogenetics and Evolution, 2001, 18(2): 306-323. [104] Pedata P, Polaszek A. A revision of the Encarsia longifasciata species group (Hymenoptera: Aphelinidae)[J]. Systematic Entomology, 2003, 28: 361-374. [105] Kolaczkowski B, Thornton J W. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous[J]. Nature, 2004, 431(7011): 980-984. [106] Dega R K Y, Ercal G. A comparative analysis of progressive multiple sequence alignment approaches using UPGMA and neighbor joining based guide trees[J]. International Journal of Computer Science, 2015(5): 1-9. [107] Le Cam L. Maximum likelihood: an introduction[J]. International Statistical Review/Revue Internationale de Statistique, 1990, 153-171. [108] Ellison A M. Bayesian inference in ecology[J]. Ecology Letters, 2004, 7(6): 509-520. [109] Nordborg M. Coalescent Theory[M]//Handbook of Statistical Genomics. Hoboken, NJ: Wiley, 2019, 145-30. [110] Puillandre N, Brouillet S, Achaz G. ASAP: assemble species by automatic partitioning[J]. Molecular Ecology Resources, 2021, 21(2): 609-620. [111] Trunz V, Packer L, Vieu J, et al. Comprehensive phylogeny, biogeography and new classification of the diverse bee tribe Megachilini: Can we use DNA barcodes in phylogenies of large genera?[J]. Molecular Phylogenetics and Evolution, 2016, 103: 245-259. [112] Evans D M, Kitson J J N, Lunt D H, et al. Merging [113] Lyra M L, Lourenço A C C, Pinheiro P D, et al. High-throughput DNA sequencing of museum specimens sheds light on the long-missing species of the Bokermannohyla claresignata group (Anura: Hylidae: Cophomantini)[J]. Zoological Journal of the Linnean Society, 2020, 190(4): 1235-1255. [114] Hykin S M, Bi K, Mcguire J A. Fixing formalin: a method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing[J]. PLoS ONE, 2015, 10(10): e0141579. [115] Cruaud P, Rasplus J Y, Rodriguez L J, et al. High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy[J]. Scientific Reports, 2017, 7(1): 41948. [116] Tay W T, Elfekih S, Polaszek A, et al. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens[J]. Scientific Reports, 2017, 7(1): [117] Paula D P, Linard B, Crampton-Platt A, et al. Uncovering trophic interactions in Arthropod predators through DNA shotgun-sequencing of gut contents[J]. PLoS ONE, 2016, 11(9): e0161841. [118] Zhang Y M, Williams J L, Lucky A. Understanding UCEs: A comprehensive primer on using ultraconserved elements for Arthropod phylogenomics[J]. Insect Systematics and Diversity, 2019, 3(5): 1-12. [119] Lemmon A R, Emme S A, Lemmon E M. Anchored hybrid enrichment for massively high-throughput phylogenomics[J]. Systematic Biology, 2012, 61(5): 727-44. |
[1] | RUAN Xiaoyu, WANG Shasha, LAI Youpeng. Investigation and Identification of Parasitic Natural Enemy Tachinid Resources of Gynaephora qinghaiensis [J]. Chinese Journal of Biological Control, 2025, 41(2): 269-275. |
[2] | SUN Xingxing, WANG Fan, JIANG Yingjie, ZHANG Lisheng. Research Progress on Damage Characteristics and Parasitoids of Important Pests in Peach [J]. Chinese Journal of Biological Control, 2025, 41(1): 231-250. |
[3] | CHENG Jiaxu, FENG Shuo, HAO Xinyi, SU Ya, CAO Weiping, LI Yaofa, JIA Haimin, SONG Jian. Occurrence,Identification and Control of Bradysia odoriphaga on Atractulodes chinensis(DC.) Koidz [J]. Chinese Journal of Biological Control, 2024, 40(2): 491-496. |
[4] | NING Xiaoxue, MAN Xiaoming, LIU Wanxue, GENG Hui, YANG Nianwan. Identification, Development and Reproduction of Encarsia lutea, Parasitoid of Bemisia tabaci [J]. Chinese Journal of Biological Control, 2023, 39(3): 731-739. |
[5] | ZHOU Xiaogui, Tang Pu, Wu Qiong, GUO Huawei, XIAO Qiang, CHEN Xuexin. Identification of Two Common Larval Parasitic Wasps of Ectropis obliqua and Ectropis grisescens (Lepidoptera: Geometridae) [J]. Chinese Journal of Biological Control, 2023, 39(1): 1-9. |
[6] | GAO Zupeng, TANG Zhaolei, GUO Jingfei, HE Kanglai, WANG Zhenying. The Parasitism of Exorista japonica on Spodoptera frugiperda Found in the Fields of Chongzuo, Guangxi [J]. Chinese Journal of Biological Control, 2021, 37(6): 1166-1171. |
[7] | JIANG Xiaosheng, SUN Yucheng, CHEN Fajun, GE Feng, OUYANG Fang. Control of Maize Aphids by Natural Enemies and Birds under Different Farmland Landscape Patterns in North China [J]. Chinese Journal of Biological Control, 2021, 37(5): 863-869. |
[8] | LI Yaofa, ZHAO Yujing, AN Jingjie, DANG Zhihong, PAN Wenliang, SONG Jian, GAO Zhanlin. Effects of Egg Age and Density of Helicoverpa armigera on Parasitical Efficiency of Trichogramma dendrolimi [J]. Chinese Journal of Biological Control, 2021, 37(2): 356-361. |
[9] | YIN Chuanlin, YE Xinhai, CHEN Mengyao, MEI Yang, XIAO Huamei, LI Fei. Evolution Analysis of Cytochrome P450 Gene Family in Parasitoid Wasps [J]. journal1, 2019, 35(3): 335-342. |
[10] | LI Jingjing, WANG Fei, YAO Hongwei, YE Gongyin. Research Advances on RNA Viruses in Parasitoid Wasps [J]. journal1, 2018, 34(6): 914-922. |
[11] | MA Xingzhou, LI Fei, CHEN Xuexin. Identification and Evolutionary Analysis of miRNA Genes Families of Hymenoptera [J]. journal1, 2018, 34(1): 36-43. |
[12] | LIN Haoyu, FU Lieqing, LIN Jianhui, Hua Yin, Han Xiaohong, ZHENG Junxian, He Huan, Zhang Feiping, LIANG Guanghong. Main Species of Parasitic Natural Enemy Insects within Dendrolimus houi (Lajonquiere) in the Forest of Cryptomeria fortunei (Hooibrenk) [J]. journal1, 2017, 33(6): 842-848. |
[13] | WANG Feng, LIU Bin, NONG Xiangqun, LU Hongxue, WANG Guangjun, CAO Guangchun, LIU Shaofang, ZHANG Zehua. Multigene Identification of Four Potential Biocontrol Strains in Metarhizium Genus [J]. journal1, 2017, 33(6): 780-787. |
[14] | SHEN Zhaocan, CHEN Long, WU Jiadong, LI Yuanxi, WANG Su. Diversity and Dynamic of Parasitoid Wasps and Lepidopteran Insects during Growth Stages of Rice [J]. journal1, 2017, 33(5): 590-596. |
[15] | HU Zezhang, SUN Meng, LÜ Bing, DUAN Min, ZHAI Yifan, CHEN Hao, ZHENG Li, YU Yi. Application of DNA Barcoding Technique for Species Identification of Orius Wolff (Heteroptera:Anthocoridae) [J]. journal1, 2017, 33(4): 487-495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||