[1] Wagner H, Bauer R, Melchart D, et al. Chromatographic fingerprint analysis of herbal medicines[M]. Germany: Springer, Cham, 2011. [2] Lu Y, Guo S, Zhang F, Yan H, et al. Nutritional components characterization of goji berries from different regions in China[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 195: 113859. [3] Masci A, Carradori S, Casadei MA, et al. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects[J]. Food Chemistry, 2018, 254: 377-389. [4] 陈靖枝, 卢星, 胡运琪, 等. 传统中药地骨皮化学成分和药理活性研究进展[J]. 中国中药杂志, 2021,46(12): 3066-3075. [5] Bai L, Li X, Cao Y, et al. Fusarium culmorum and Fusarium equiseti causing root rot disease on Lycium barbarum (goji berry) in China[J]. Plant Diseases, 2020, 104(11): 3066-3067. [6] 李薛娟, 阿孝珠, 白露超. 诺木洪枸杞根腐病病原菌的分离与鉴定[J]. 分子植物育种, 2021, 19(4): 1232-1236. [7] 陈思杰, 杜娟, 张涛, 等. 宁夏枸杞根腐病病原研究[J]. 农业科学研究, 2021, 42(4): 7-11. [8] Chamkhi I, Omari E N, Balahbib A, et al. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement[J]. Saudi Journal of Biological Sciences, 2022, 29: 1246-1259. [9] Md Delwar H, Md Shafiul I R, Phalguni D, et al. Plant growth promoting rhizobacteria (PGPR) increases yield and mineral contents of rice by mobilizing nutrients in the rhizosphere[J]. Research in Agriculture Livestock and Fisheries, 2023, 10(1): 73-81. [10] Lyu D, Backer R, Berrué F, Martinez FC, et al. Plant growth-promoting rhizobacteria (PGPR) with microbial growth broth improve biomass and secondary metabolite accumulation of Cannabis sativa L.[J]. Journal of Agricultural and Food Chemistry, 2023, 71: 7268-7277. [11] Chamkhi I, Sbabou L, Aurag J. Improved growth and quality of saffron (Crocus sativus L.) in the field conditions through inoculation with selected native plant growth-promoting rhizobacteria (PGPR)[J]. Industrial Crops & Products, 2023, 197: 116606. [12] Gupta R, Khan F, Alqahtani-Fatmah M, et al. Plant growth-promoting rhizobacteria (PGPR) assisted bioremediation of heavy metal toxicity[J]. Applied Biochemistry and Biotechnology, 2024, 196(5): 2928-2956. [13] Simmons-Elliott J, Tolosa T, Zebelo S. Plant growth-promoting rhizobacteria (PGPR) modulates sweet corn-corn earworm interaction[J]. Crop Protection, 2023, 169: 106246 [14] 方园, 彭勇政, 廖长贵, 等. 一株具有防病促生功能的贝莱斯芽胞杆菌SF327[J]. 微生物学报, 2022, 62(10): 4071-4088. [15] 李雪萍, 张怡忻, 李建军, 等. 兰州百合防病促生细菌筛选及其效果评价[J]. 中国生物防治学报, 2022, 38(5): 1296-1307. [16] 许世洋, 范雨轩, 汪学苗, 等. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报, 2022, 62(7): 2735-2750. [17] 杜婵娟, 杨迪, 潘连富, 等. 香蕉枯萎病生防菌肥的优化及其防病促生效果研究[J]. 中国生物防治学报, 2020, 36(3): 396-404. [18] 张小彦, 何静, 侯彩霞, 等. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. [19] 朱杰, 程亮, 姚强, 等. 枸杞根腐致病菌及拮抗菌的分离鉴定[J]. 西北农业学报, 2023, 32(7): 1120-1130. [20] 候彩霞, 丁德东, 何静, 等. 枸杞内生真菌的筛选、鉴定及其生防作用[J]. 浙江农业学报, 2023, 35(7): 1662-1671. [21] 曲春鹤, 何付丽, 刘培福, 等. 辣椒根腐病拮抗细菌的筛选、鉴定及其抑菌促生作用[J]. 东北农业大学学报, 2012, 43(7): 89-94. [22] 杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109. [23] 鲍士旦. 土壤农化分析3 版[D]. 北京: 中国农业出版社, 2000. [24] 李雪萍, 许世洋, 李敏权, 等. 甘南州不同退化程度高寒草甸植被及士壤特性的演化规律[J]. 生态学报, 2022, 42(18): 7541-7552. [25] Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review[J]. Biotechnology and Biotechnology Equipy, 2017, 31(3): 446-459. [26] Nour Chiab I G, Saidi M N, Gargouri-Bouzid R. Volatile organic compounds from Bacillus mojavensis I4 promote plant growth and inhibit phytopathogens[J]. Physiological and Molecular Plant Pathology, 2022, 121: 101887. [27] Safa Charfeddine I G, Charfeddine M, Gargouri-Bouzid R, et al. Antimicrobial and antioxidant activities of Bacillus mojavensis I4 lipopeptides and their potential application against the potato dry rot causative Fusarium solani[J]. Archives of Microbiology, 2022, 204: 484. [28] Lee G, Choi H, Liu H, et al. Biocontrol of the causal brown patch pathogen Rhizoctonia solani by Bacillus velezensis GH1-13 and development of a bacterial strain specific detection method[J]. Frontiers in Plant Science, 2023, 13: 1091030. [29] Li XJ, Yao CX, Qiu R, et al. Isolation, identification, and evaluation of the biocontrol potential of a Bacillus velezensis strain against tobacco root rot caused by Fusarium oxysporum[J]. Journal of Applied Microbiology, 2022, 134: 1-9. [30] Yang L, Zhou Y, Guo L, et al. The effect of banana rhizosphere chemotaxis and chemoattractants on Bacillus velezensis LG14-3 root colonization and suppression of banana fusarium wilt disease[J]. Sustainability, 2023, 15: 351. [31] Zhang P, Xie G, Wang L, et al. Bacillus velezensis BY6 Promotes growth of poplar and improves resistance contributing to the biocontrol of Armillaria solidipes[J]. Microorganisms, 2022, 10: 2472. [32] Nordgaard M, Blake C, Maróti G, et al. Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization[J]. iScience, 2022, 25: 104406. [33] Saengchan C, Sangpueak R, Thanh TL, et al. Induced resistance against Fusarium solani root rot disease in cassava plant (Manihot esculenta Crantz) promoted by salicylic acid and Bacillus subtilis[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2022, 72(1): 516-526. [34] Wang F, Xiao J, Zhang Y, et al. Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit[J]. Postharvest Biology and Technology, 2021, 174: 111456 [35] Kang K, Niu Z, Zhang W, et al. Antagonistic strain Bacillus halotolerans Jk-25 mediates the biocontrol of wheat common root rot caused by Bipolaris sorokiniana[J]. Plants, 2023, 12: 828. [36] Riaz R, Khan A, Khan WJ, et al. Vegetable associated Bacillus spp. suppress the pea (Pisum sativum L.) root rot caused by Fusarium solani[J]. Biological Control, 2021, 158: 104610. [37] Gao J, Khan MS, Sun Y, et al. Characterization of an endophytic antagonistic bacterial strain Bacillus halotolerans LBG-1-13 with multiple plant growth promoting traits, stress tolerance, and its effects on lily growth[J]. BioMed Research International, 2022, 5960004. [38] Tsalgatidou PC, Thomloudi EE, Delis C, et al. Compatible consortium of endophytic Bacillus halotolerans strains cal.l.30 and cal.f.4 promotes plant growth and induces systemic resistance against Botrytis cinerea[J]. Biology, 2023, 12: 779. [39] Jiménez-Gómez A, García-Estévez I, García-Fraile P, et al. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer[J]. Joural Science Food Agricultural, 2020, 100: 2742-2749. [40] Balestrini R, Salvioli A, Dal Molin A, et al. Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots[J]. Mycorrhiza, 2017, 27: 417-430. [41] Savarese C, Cozzolino V, Verrillo M, et al. Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism[J]. Plant Soil, 2022, 481: 285-314. [42] Du C, Yang D, Ye Y, et al. Construction of a compound microbial agent for biocontrol against Fusarium wilt of banana[J]. Frontier Microbiology, 2022, 13: 1066807. [43] Ghada ED, Amira ES. Promising biological agents represented in Bacillus velezensis 33RB and Aspergillus niger 46SF endophytic isolates for controlling Populus tomentosa wilt and anthracnose diseases[J]. Egyptian Journal of Biological Pest Control, 2022, 32: 144. [44] Jiménez-Gómez A, García-Estévez I, Escribano-Bailón MT, et al. Bacterial fertilizers based on Rhizobium laguerreae and Bacillus halotolerans enhance Cichorium endivia L. phenolic compound and mineral contents and plant development[J]. Foods, 2021, 10: 424. [45] Yang L, Shi Y, Yang X, et al. Analysis of growth and rhizosphere soil changes of herbaceous peony treated with a compound microbial agent under contrasted soil conditions[J]. Horticulturae, 2023, 9: 602. [46] Deng L, Wang T, Luo W, et al. Effects of a compound microbial agent and plants on soil properties, enzyme activities, and bacterial composition of Pisha sandstone[J]. Environmental Science and Pollution Research, 2021, 28(38): 1-12. |