[1] Cariddi C, Sanzani S M. A severe outbreak of bacterial lettuce soft rot caused by Pectobacterium carotovorum subsp. carotovorum in Apulia (Italy)[J]. Journal of Plant Pathology, 2013, 95(2):441-446. [2] Chitrampalam P, Cox C A, Turini T A, et al. Efficacy of Coniothyrium minitans on lettuce drop caused by Sclerotinia minor in desert agroecosystem[J]. Biological Control, 2010, 55(2):92-96. [3] Yishay M, Burdman S, Valverde A, et al. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon[J]. Environmental Microbiology, 2008, 10(10):2746-2759. [4] Moleleki L N, Onkendi E M, Mongae A O, et al. Characterisation of Pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa[J]. European Journal of Plant Pathology, 2013, 135(2):279-288. [5] Sharma P, Verma P R, Meena P D, et al. Research progress analysis of sclerotinia rot (Sclerotinia sclerotiorum) of oilseed brassicas through bibliography[J]. Journal of Oilseed Brassica, 2016, 1(2):45-125. [6] Barnard A M L, Salmond G P C. Quorum sensing in Erwinia species[J]. Analytical and Bioanalytical Chemistry, 2007, 387(2):415-423. [7] Lumsden R D. Sclerotinia sclerotiorum infection of bean and the production of cellulase[J]. Phytopathology, 1969, 59(5):653-657. [8] Fira D, Dimkić I, Berić T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285(10):44-55. [9] Gerayeli N, Baghaee-Ravari S, Tarighi S. Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection[J]. European Journal of Plant Pathology, 2018, 150(4):1049-1063. [10] Azaiez S, Slimene I B, Karkouch I, et al. Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds[J]. Microbiological Research, 2018, 217:23-33. [11] Zhang J, Xue A G, Morrison M J, et al. Impact of time between field application of Bacillus subtilis strains SB01 and SB24 and inoculation with Sclerotinia sclerotiorum on the suppression of Sclerotinia stem rot in soybean[J]. European Journal of Plant Pathology, 2011, 131(1):95-102. [12] 侯毅平, 章四平, 王建新, 等. 枯草芽胞杆菌NJ-18对油菜菌核病的防治效果及其定殖动态[J]. 植物病理学报, 2013, 43(4):411-417. [13] Ruiz-Garcia C, Bejar V, Martinez-Checa F, et al. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1):191-195. [14] Wang L T, Lee F L, Tai C J, et al. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(3):671-675. [15] Dunlap C A, Kim S J, Kwon S W, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3):1212-1217. [16] 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽胞杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10):1969-1983. [17] 赵昱榕, 李磊, 谢学文, 等. 贝莱斯芽胞杆菌ZF2对多主棒孢病菌防治效果[J]. 中国生物防治学报, 2019, 35(2):217-225. [18] Rahman M M E, Hossain D M, Suzuki K, et al. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard[J]. Australasian Plant Pathology, 2016, 45(1):103-117. [19] 李全胜, 谢宗铭, 刘政, 等. 棉花黄萎病拮抗细菌H14的筛选鉴定及其拮抗机理分析[J]. 植物保护学报, 2018, 45(6):1204-1211. [20] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001, 186-188. [21] 赵新贝, 王娟, 上官妮妮, 等. 番茄灰霉病生防细菌TD-7的鉴定、发酵条件优化及其防治效果[J]. 中国生物防治学报, 2019, 35(2):226-239. [22] Bankevich A, Nurk S, Antipov D, et al. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5):455-477. [23] Auch A F, Klenk H P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs[J]. Standards in Genomic Sciences, 2010, 2(1):142. [24] 曾欣, 张亚惠, 迟惠荣, 等. 温郁金内生拮抗细菌B-11的分离及其抑菌活性[J]. 微生物学通报, 2019, 46(05):1018-1029. [25] 曹亮亮, 王康, 马婧, 等. 酸解羽毛粉代替蛋白胨研制新型细菌培养基[J]. 微生物学通报, 2014, 41(11):2353-2361. [26] Fan B, Blom J, Klenk H P, et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "operational group B. amyloliquefaciens" within the B. subtilis species complex[J]. Frontiers in Microbiology, 2017, 8:22. [27] 安立超, 严学亿, 胡磊, 等. 嗜盐菌的特性与高盐废水生物处理的进展[J]. 环境污染与防治, 2002, 24(5):293-296. [28] Rooney A P, Price N P J, Ehrhardt C, et al. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(10):2429-2436. [29] Meier-Kolthoff J P, Auch A F, Klenk H P, et al. Genome sequence-based species delimitation with confidence intervals and improved distance functions[J]. BMC Bioinformatics, 2013, 14(1):60. [30] Federhen S. The NCBI taxonomy database[J]. Nucleic Acids Research, 2011, 40(1):136-143. [31] 张斌, 杨晓云, 陈志谊. 番茄枯萎病致病镰刀菌种类鉴定及优势种群的研究[J]. 植物病理学报, 2016, 46(4):561-565. [32] 刘邮洲, 陈志谊, 梁雪杰, 等. 番茄枯萎病和青枯病拮抗细菌的筛选、评价与鉴定[J]. 中国生物防治学报, 2012, 28(1):101-108. [33] Chen X, Pizzatti C, Bonaldi M, et al. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes[J]. Frontiers in Microbiology, 2016, 7:714. |