[1] 马亚琴, 贾蒙, 周心智. 柑橘采后贮藏保鲜技术研究进展[J]. 食品与发酵工业, 2019, 45(22): 290-297. [2] Zhu C Y, Sheng D L, Wu X D, et al. Identification of secondary metabolite biosynthetic gene clusters associated with the infection of citrus fruit by Penicillium digitatum[J]. Postharvest Biology and Technology, 2017, 134: 17-21. [3] Wang Z S, Sui Y, Li J S, et al. Biological control of postharvest fungal decays in citrus: a review[J]. Critical Reviews in Food Science and Nutrition, 2020, 62(4): 861-870. [4] Zheng X D, Zhang H Y, Sun P. Biological control of postharvest green mold decay of oranges by Rhodotorula glutinis[J]. European Food Research and Technology, 2004, 220: 353-357. [5] 黄健, 曾顺德, 张迎君. 果蔬采后病害生物防治研究进展[J]. 西南园艺, 2005(5): 23-25, 38. [6] 王华利, 戴葵堂, 邓伯勋. 柠檬形克勒克酵母对柑橘的防腐保鲜技术试验[J]. 湖北农业科学, 2006(3): 372-374. [7] 王智荣. 荧光假单胞菌ZX生物防治采后锦橙青霉病和绿霉病研究[D]. 重庆: 西南大学, 2019. [8] 詹喜. 枯草芽孢杆菌对柑橘采后病害的生物防治及其机理研究[D]. 杭州: 浙江大学, 2006. [9] 赵鲁宁, 周秋阳, 杨慧慧, 等. 季也蒙毕赤酵母Y35-1菌株对枇杷采后炭疽病的抑菌效果及保鲜作用[J]. 食品科学, 2019, 40(4): 170-177. [10] Li J K, Li H, Ji S F, et al. Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit[J]. Postharvest Biology and Technology, 2019, 149: 42-49. [11] 白腾飞, 刘月芹. 沙雷氏菌抗生性次级代谢产物合成机制[J]. 微生物学杂志, 2017, 37(4): 115-119. [12] 陈三凤, 李季伦. 几丁质酶研究历史和发展前景[J]. 微生物学通报, 1993(3): 156-160. [13] 关文强, 马骏, 高凯. 果蔬采后诱导抗病研究进展[J]. 食品与发酵工业, 2005(6): 85-89. [14] 张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. [15] Abdelkhalek A, Behiry S I, Al-Askar A A. Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus[J]. Agronomy, 2020, 10: 1312. [16] Kim Y S, Lee Y, Cheon W, et al. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides[J]. Scientific Reports, 2021, 11: 626. [17] 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力[J]. 中国农业科学, 2019, 52(11): 1908-1917. [18] 易婷, 黄纯杨, 李治模, 等. 贝莱斯芽胞杆菌菌株HY19对多种作物病原真菌的拮抗和对烤烟赤星病的防治作用[J]. 植物保护学报, 2022, 49(3): 966-974. [19] Li S P, Xiao Q L, Yang H J, et al. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold[J]. Pesticide Biochemistry and Physiology, 2022, 187: 105199. [20] 王麒, 许婧霞, 张亚妮, 等. 贝莱斯芽孢杆菌JJYY防控土传病害效果评价及其全基因组测序分析和抗菌成分鉴定[J]. 微生物学通报2023: 1-18. [21] 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015. [22] 林天兴, 唐梅, 黄明远, 等. 2012高产铁载体棉田土壤细菌SS05的筛选与鉴定[J]. 微生物学通报, 39(5): 668-676. [23] Solanki M K, Singh R K, Srivastava S, et al. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani [J]. Journal of Basic Microbiology, 2014, 54: 585-596. [24] Fang W, Ana Belén Sanz, Bartual S G, et al. Mechanisms of redundancy and specificity of the Aspergillus fumigatus crhtransglycosylases[J]. Nature Communications, 2019, 10(1): 1669. [25] Wang J, Zhang L, Teng K, et al. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity[J]. Applied and Environmental Microbiology, 2014, 80(8): 2633-2643. [26] 曾欣, 张亚惠, 迟惠荣, 等. 温郁金内生拮抗细菌B-11的分离及其抑菌活性[J]. 微生物学通报, 2019, 46(5): 1018-1029. [27] Zhang R X, Yin J, Sui Z M, et al. Biocontrol of antifungal volatiles produced by Ceriporia lacerate HG2011 against citrus fruit rot incited by Penicillium spp.[J]. Postharvest Biology and Technology, 2022, 194: 112094. [28] Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils--a review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475. [29] Krebs H A, Williamson D H, Bates M W, et al. The role of ketone bodies in caloric homeostasi[J]. Advance Enzyme Regulation, 1971, 9: 387-409. [30] Ni L X, Yue F F, Zhang J H, et al. Cell membrane damage induced by continuous stress of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa at different physiological stages[J]. Environmental Science and Pollution Research, 2020, 27(11): 12624-12634. [31] 张玉超. 咪鲜胺和嘧霉胺对指状青霉菌的抑制作用及抗性机制研究[D]. 武汉: 华中农业大学, 2021. [32] Xu X B, Lei H H, Ma X Y, et al. Antifungal activity of 1-methylcyclopropene (1-MCP) against anthracnose (Colletotrichum gloeosporioides) in postharvest mango fruit and its possible mechanisms of action[J]. International Journal of Food Microbiology, 2017, 241(16): 1-6. |