[1] 张钟凯, 李志浩. 我国棉花主产区新疆进入棉花采收期[J]. 中亚信息, 2020(10): 30-31. [2] 陈捷胤, 戴小枫. 棉花对黄萎病的抗病机制研究进展[J]. 分子植物育种, 2005, 3(3): 427-435. [3] 徐理, 朱龙付, 张献龙. 棉花抗黄萎病机制研究进展[J]. 作物学报, 2012, 38(9): 1553-1560. [4] 刘海洋, 王琦, 王伟, 等. 新疆棉花黄萎病的发生现状及其病原菌的分子鉴定与ISSR分析[J]. 植物保护学报, 2018, 45(6): 1194-1203. [5] 王桂荣, 王源超, 杨光富, 等. 农业病虫害绿色防控基础的前沿科学问题[J]. 中国科学基金, 2020, 34(4): 374-380. [6] 张兴华, 李捷. 棉花黄萎病发生和研究进展[J]. 江西农业学报, 2006, 18(1):99-104. [7] 梁宏, 黄静, 赵佳, 等. 生物防治棉花黄萎病的研究进展[J]. 生物技术通报, 2015, 31(5): 1-6. [8] 白红燕, 冯自力, 冯鸿杰, 等. 48株枯草芽孢杆菌对棉花黄萎病防治效果评测[J]. 中国棉花, 2021, 48(12): 13-19. [9] 赵卫松, 李社增, 赵明珠, 等. 基于西兰花尾菜为载体的解淀粉芽胞杆菌PHODG36颗粒剂研制及其对棉花黄萎病的防治效果[J]. 中国生物防治学报, 2023, 39(5): 1186-1193. [10] Han Q, Wu F, Wang X, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity[J]. Environmental Microbiology, 2015, 17(4): 1166-1188. [11] 刘璐, 万伟杰, 郑通文, 等. 根际细菌吡咯伯克霍尔德氏菌YZU-S377对棉花黄萎病的防效及其促生作用研究[J]. 河南农业科学, 2021, 50(03): 91-96. [12] 孙艳, 张学坤, 王振辉, 等. 滴灌条件下木霉菌厚垣孢子制剂防治棉花黄萎病试验[J]. 江苏农业科学, 2018, 46(10): 89-92. [13] McLaren D L, Huang H C, Rimmer S R. Hyperparasitism of sclerotinia sclerotiorum by Talaromyces flavus[J]. Canadian Journal of Plant Pathology, 1986, 8(1): 43-48. [14] 张芸, 冯自力, 冯鸿杰, 等. 内生球毛壳属真菌CEF-082对棉花黄萎病的控制作用[J]. 植物病理学报, 2016, 46(5): 697-706. [15] 薛磊. 棉花黄萎病生防链霉菌的抗病促生作用及其机制研究[D]. 咸阳: 西北农林科技大学, 2014. [16] Zhou X, Li S, Li W, et al. Myxobacterial community is a predominant and highly diverse bacterial group in soil niches[J]. Environmental Microbiology Reports, 2014, 6(1): 45-56. [17] Konovalova A, Petters T, Søgaard-Andersen L. Extracellular biology of Myxococcus xanthus[J]. FEMS Microbiology Reviews, 2010, 34(2): 89-106. [18] 王春玲, 吕颖颖, 姚青, 等. 粘细菌资源挖掘与多相分类研究进展[J]. 微生物学通报, 2021, 48(8): 2870-2880. [19] Schäberle TF, Lohr F, Schmitz A, et al. Antibiotics from myxobacteria[J]. Natural Product Reports, 2014, 31(7): 953-972. [20] Ye X F, Li Z K, Luo X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1): 49. [21] Marshall R C, Whitworth D E. Is "Wolf-Pack" Predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside kin[J]. Bioessays, 2019, 41(4):1800247. [22] Bull C T, Shetty K G, Subbarao K V. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents[J]. Plant Disease, 2002, 86(8): 889-896. [23] Hanna D, Anna J B, Wioletta W D, et al. Myxobacteria as a potential biocontrol agent effective against pathogenic fungi of economically important forest trees[J]. Dendrobiology, 2015, 74:13-24. [24] Li Z K, YE X F, Chen P L, et al. Antifungal potential of Corallococcus sp. strain EGB against plant pathogenic fungi[J]. Biological Control, 2017, 110: 10-17. [25] 窦新玉, 潘雯, 董志铭, 等. 天山大峡谷原始森林黏细菌的分离鉴定及其抗菌活性[J]. 微生物学通报, 2023, 50(9): 3952-3969. [26] 白欣禾, 韩剑, 窦新玉, 等. 新疆农田土壤中粘细菌的分离鉴定及其捕食特性[J]. 新疆农业大学学报, 2022, 45(6): 462-473. [27] 王创. 粘细菌Myxococcus sp. BS对烟草青枯病的生防效果及其根际微生物调控机制[D]. 南京: 南京农业大学, 2020. [28] 沈萍, 陈向东. 微生物学试验(第四版)[M]. 北京: 高等教育出版社, 2007, 241-242, 247. [29] 谢晶. 植物病原菌拮抗微生物的筛选、鉴定及拮抗机理研究[D]. 成都: 四川大学, 2004. [30] 陈明, 穆凯热姆·阿卜来提, 刘政, 等. 放线菌LG-9发酵液对棉花黄萎病菌的抑菌活性及防效测定[J]. 石河子大学学报(自然科学版), 2019, 37(2): 147-153. [31] 黄彩敏. 大丽轮枝菌胞外蛋白VdSOD1的非经典分泌特性及致病功能研究[D]. 曲阜: 曲阜师范大学, 2021. [32] Boone D R, Castenholz R W, Garrity G M. Bergey’s manual of systematic bacteriology[M]. Berlin: Springer Science & Amp;Business Media, 2001. [33] Reichenbanch H, Dworkin M. The myxobacteria[M]. Berllin: Springer, 1992: 3418-3487. [34] Zhang X, Yao Q, Cai Z, et al. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China[J]. PLoS ONE, 2013, 8(8): e70466. [35] Stackebrandt E, Päuker O, Erhard M. Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry: comparison with gene sequence phylogenies[J]. Current Microbiology, 2005, 50: 71-77. [36] Garcia R O, Reichenbach H, Ring M W, et al. Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(6): 1524-1530. [37] 朱荷琴, 李志芳, 冯自力, 等. 我国棉花黄萎病研究十年回顾及展望[J]. 棉花学报, 2017, 29(S1): 37-50. [38] 李婷, 王洪旭, 崔广禄, 等. 哈茨木霉在植物应用上的研究进展[J]. 中国农学通报, 2023, 39(21): 57-61. [39] 冯超红, 李丽娟, 张姣姣, 等. 球毛壳菌促生防病机制及应用研究进展[J]. 中国生物防治学报, 2023, 39(4): 961-969. [40] Babalola O O. Beneficial bacteria of agricultural importance[J]. Biotechnology Letters, 2010, 32: 1559-1570. [41] Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480. [42] Trdá L, Boutrot F, Claverie J, et al. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline[J]. Frontiers in Plant Science, 2015, 6: 219. [43] 李周坤, 叶现丰, 杨凡, 等. 黏细菌捕食生物学研究进展及其在农业领域的应用潜力[J]. 南京农业大学学报, 2021, 44(2): 208-216. [44] 王婷. 新型生防粘细菌Myxococcus sp. BS的分离及粘细菌对细菌性软腐病菌的捕食机理研究[D]. 南京: 南京农业大学, 2018. [45] 董志铭, 白欣禾, 窦新玉, 等. 捕食梨火疫病菌黏细菌菌株的筛选及其生防潜力[J]. 果树学报, 2024, 41(1): 143-154. [46] 董超南. 大豆疫霉捕食性黏细菌Archangium sp. AC19的筛选鉴定及抗菌机制研究[D]. 南京: 南京农业大学, 2021. [47] 任兴波, 张子良, 赵璞钰, 等. 马铃薯晚疫病菌拮抗粘细菌YR-35的分离鉴定及其代谢产物稳定性[J]. 中国生物防治学报, 2016, 32(3): 379-387. [48] Iizuka T, Fudou R, Jojima Y, et al. Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties[J]. The Journal of Antibiotics, 2006, 59(7): 385-391. [49] 代京莎, 李安章, 朱红惠. 粘细菌在植物病害生物防治中的作用[J]. 生物技术进展, 2016, 6(4): 229-234. [50] Xiao Y, Wei X, Ebright R, et al. Antibiotic production by myxobacteria plays a role in predation[J]. Journal of Bacteriology, 2011, 193(18): 4626-4633. [51] Goldman B S, Nierman W C, Kaiser D, et al. Evolution of sensory complexity recorded in a myxobacterial genome[J]. Proceedings of the National Academy of Sciences, 2006, 103(41): 15200-15205. [52] Muñoz-Dorado J, Marcos-Torres F J, García-Bravo E, et al. Myxobacteria: moving, killing, feeding, and surviving together[J]. Frontiers in Microbiology, 2016, 7: 781. [53] Zhou J, Chen J, Li Z, et al. Enzymatic properties of a multi-specific β-(1, 3)-glucanase from Corallococcus sp. EGB and its potential antifungal applications[J]. Protein Expression and Purification, 2019, 164: 105481. [54] Li Z, Xia C, Wang Y, et al. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties[J]. International Journal of Biological Macromolecules, 2019, 132: 1235-1243. [55] Taylor W J, Draughon F A. Nannocystis exedens: A potential biocompetitive agent against Aspergillus flavus and Aspergillus parasiticus[J]. Journal of Food Protection, 2001, 64(7): 1030-1034. [56] Li Z, Wang T, Luo X, et al. Biocontrol potential of Myxococcus sp. strain BS against bacterial soft rot of calla lily caused by Pectobacterium carotovorum[J]. Biological Control, 2018, 126: 36-44. [57] 于潇玮, 王创, 王可, 等. 黏细菌Myxococcus sp. BS对烟稻轮作土壤真菌多样性和群落组装过程的调控[J]. 南京农业大学学报, 2023, 46(5): 882-890. [58] Lapidot D, Dror R, Vered E, et al. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis[J]. Plant Pathology, 2015, 64(3): 545-551. [59] Hayman K A, Jugah K, Radziah O, et al. Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae[J]. Biological Control, 2017, 112: 55-63. [60] Dorra B A, Olfa F G, Slim T. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a[J]. Biological Control, 2018, 124: 61-67. [61] Dworkin M. Biology of the myxobacteria[J]. Annual Reviews in Microbiology, 1966, 20(1): 75-106. [62] Dawid W. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiology Reviews, 2000, 24(4): 403-427. [63] Zhang G, Xu Y, Zhang S, et al. Transformation capability optimization and product application potential of proteatia brevitarsis (Coleoptera: Cetoniidae) larvae on cotton stalks[J]. Insects, 2022, 13(12): 1083. [64] Don J B, Noel R K, James T S. Bergey’s Manual of Systematic Bacteriology, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria[M]. New York: Springer-Verlag, 2005, 1059-1143. |