[1] 王哲, 钟涛, 刘培斌, 等. 韭菜迟眼蕈蚊发生规律及防治方法研究进展[J]. 环境昆虫学报, 2017, 39(6): 1397-1406. [2] 张友军, 吴青君, 王少丽, 等. 我国蔬菜重要害虫研究现状与展望[J]. 植物保护, 2013, 39(5): 38-45. [3] 史彩华, 胡静荣, 杨玉婷, 等. 不同药剂和施药方法对韭蛆的田间防治效果[J]. 植物保护学报, 2018, 45(2): 282-289. [4] 赵秀梅, 郑旭, 王连霞, 等. 苏云金芽胞杆菌G033A大面积防治二代区亚洲玉米螟效果评价[J]. 中国生物防治学报, 2022, 38(1): 166-171. [5] Jouzani G S, Valijanian E, Sharafi R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings[J]. Applied Microbiology Biotechnology, 2017, 101(7): 2691-2711. [6] Morse R J, Yamamoto T, Stroud R M. Structure of Cry2Aa suggests an unexpected receptor binding epitope[J]. Structure, 2001, 9(5): 409-417. [7] Boonserm P, Mo M, Angsuthanasombat C, et al. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution[J]. Journal of Bacteriology, 2006, 188(9): 3391-3401. [8] Boonserm P, Davis P, Ellar D J, et al. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications[J]. Journal of Molecular Biology, 2005, 348(2): 363-382. [9] Wang J X, Yang X Z, He H, et al. Knockout of two Cry-binding aminopeptidase N isoforms does not change susceptibility of Aedes aegypti larvae to Bacillus thuringiensis subsp. israelensis Cry4Ba and Cry11Aa toxins[J]. Insects, 2021, 12: 223. [10] Ruiz L, Segura C, Trujillo J, et al. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae)[J]. Memórias Do Instituto Oswaldo Cruz, 2004, 99(1): 73-79. [11] 周燕, 朱英芝, 姜明国. 苏云金芽孢杆菌杀蚊菌株研究进展[J]. 基因组学与应用生物学, 2020, 39(10): 4614-4623. [12] 慕卫, 丁中, 何茂华, 等. 韭菜迟眼蕈蚊的生测方法及防治药剂研究[J]. 华北农学报, 2002, 17(S1): 12-16. [13] 李慧, 赵云贺, 王秋红, 等. 新烟碱类杀虫剂在韭菜中的内吸性及其对韭菜迟眼蕈蚊幼虫的毒力比较[J]. 农药学学报, 17(2): 156-162. [14] 宋健, 曹伟平, 张海剑, 等. 苏云金芽胞杆菌JQ23的表型鉴定及对韭菜迟眼蕈蚊的防治效果[J]. 中国生物防治学报, 2016, 32(3): 326-331. [15] 杜立新, 宋健, 曹伟平, 等. 一种用于防治韭菜迟眼蕈蚊的苏云金芽孢杆菌及其应用. 中国: CN201410338466.2[P]. 2016. [16] 宋健, 曹伟平, 冯书亮, 等. 对韭菜迟眼蕈蚊幼虫高毒力Bt资源筛选及效果评价[J]. 应用昆虫学报, 2016, 53(6): 1217-1224. [17] 宋健, 张海剑, 丰硕,等. 对韭菜迟眼蕈蚊高活性的苏云金芽胞杆菌JQD117发酵培养基及摇瓶发酵条件优化[J]. 中国生物防治学报, 2022, 38(2): 333-341. [18] 宋健, 曹伟平, 郭庆港, 等. 苏云金芽胞杆菌JQD117菌株对韭蛆体内几种酶活性的影响[J]. 中国生物防治学报, 2020, 36(4): 558-563. [19] Ito T, Sahara K, Bando H, et al. Cloning and expression of novel crystal protein genes cry39A and 39orf2 from Bacillus thuringiensis subsp. aizawai Bun1-14 encoding mosquitocidal proteins[J]. Journal of Insect Biotechnology & Sericology, 2002, 71(3):123-128. [20] Ito T, Bando H, Asano S I. Activation process of the mosquitocidal δ-endotoxin Cry39A produced by Bacillus thuringiensis subsp. aizawai BUN1-14 and binding property to Anopheles stephensi BBMV[J]. Journal of Invertebrate Pathology, 2006, 93(1):29-35. [21] Ito T, Sahara K, Asano S, et al. Functional analysis of ORF2 proteins of novel Cry proteins, Cry39A and Cry40A[C]. Abstracts of the Annual Meeting, The Japanese Society of Sericultural Science, 2003, 115. [22] 方宣钧. 海南省热带农业资源研究所从菌株Bt20070720S2160-1中克隆Cry40D基因家族新成员-Bt Cry40Da1基因[J]. 分子植物育种, 2008(3): 438. [23] 方宣钧, 张文飞, 谢柳. 对蚊子等双翅目昆虫有杀虫活性的Bt cry40Dal基因及其应用. 中国: CN101824419A[P]. 2010. [24] 束长龙. 苏云金芽胞杆菌Y41新型cry基因克隆及其质粒的分析[D]. 北京: 中国农业科学院, 2008. [25] Ben-dov E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins[J]. Toxins, 2014, 6(4):1222-1243. [26] Bravo A, Gomez I, Porta H, et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity[J]. Microbial Biotechnology, 2013, 6: 17-26. [27] Soberon M, Pardo-Lopez L, Lopez I, et al. Engineering modified Bt toxins to counter insect resistance[J]. Science, 2007, 318: 1640-1642. [28] GóMez I, Arenas I, Benitez I, et al. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta[J]. Journal of Biological Chemistry, 2006, 281(45): 34032-34039. [29] Lee M K, Rajamohan F, Jenkins J L, et al. Role of two arginine residues in domain II, loop 2 of Cry1Ab and Cry1Ac Bacillus thuringiensis δ-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N[J]. Molecular Microbiology, 2000, 38(2): 289-298. [30] Maagd R, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world[J]. Trends in Genetics, 2001, 17(4):193-199. [31] Liu Y L, Wang Q Y, Wang F X, et al. Residue 544 in Domain III of the Bacillus thuringiensis Cry1Ac toxin is involved in protein structure stability[J]. The Protein Journal, 2010, 29(6): 440-444. [32] Liliana P-L, Mario S, Alejandra B. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection[J]. Fems Microbiology Reviews, 2012(1): 3-22. [33] Bravo A, Gomez I, Porta H, et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity[J]. Microbial Biotechnology, 2013, 6: 17-26. |