[1] Frisvad JC, Hubka V, Ezekiel CN, et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins[J]. Studies in Mycology, 2019, 93: 1-63. [2] Shabeer S, Asad S, Jamal A, et al. Aflatoxin contamination, its impact and management strategies: an updated review[J]. Toxins (Basel), 2022, 14(5): 307. [3] Rawal S, Kim J E, Coulombe R J. Aflatoxin B1 in poultry: toxicology, metabolism and prevention[J]. Research in Veterinary Science, 2010, 89(3): 325-331. [4] 王昌禄, 刘彤, 李王强, 等. 微生物对黄曲霉毒素的抑制机制研究进展[J]. 食品科学技术学报, 2021, 39(1): 27-36. [5] McKenzie K S, Sarr A B, Mayura K, et al. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone[J]. Food and Chemical Toxicology, 1997, 35(8): 807-820. [6] Harman G, Khadka R, Doni F, et al. Benefits to plant health and productivity from enhancing plant microbial symbionts[J]. Frontiers in Plant Science, 2020, 11: 610065. [7] Guzman-Guzman P, Kumar A, de Los Santos-Villalobos S, et al. Trichoderma species: our best fungal allies in the biocontrol of plant diseases-a review[J]. Plants (Basel), 2023, 12(3): 432. [8] Yao X, Guo H, Zhang K, et al. Trichoderma and its role in biological control of plant fungal and nematode disease[J]. Frontiers in Microbiology, 2023, 14: 1160551. [9] Druzhinina I S, Chenthamara K, Zhang J, et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts[J]. PLoS Genetics, 2018, 14(4): e1007322. [10] Kubicek C P, Steindorff A S, Chenthamara K, et al. Evolution and comparative genomics of the most common Trichoderma species[J]. BMC Genomics, 2019, 20(1): 485. [11] Tyśkiewicz R, Nowak A, Ozimek E, et al. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth[J]. International Journal of Molecular Sciences, 2022, 23(4): 2329. [12] Ren X, Branà M T, Haidukowski M, et al. Potential of Trichoderma spp. for biocontrol of aflatoxin-producing Aspergillus flavus[J]. Toxins (Basel), 2022, 14(2): 86. [13] Brown R, Bhatnagar D. Foreword: aflatoxins in maize and other crops[J]. World Mycotoxin Journal, 2015, 8(2): 135-136. [14] Anjaiah V, Thakur R P, Koedam N. Evaluation of bacteria and Trichoderma for biocontrol of pre-harvest seed infection by Aspergillus flavus in groundnut[J]. Biocontrol Science and Technology, 2006, 16(4): 431-436. [15] 任显凤. 粮油黄曲霉与毒素同步检测及木霉阻控技术研究[D]. 北京: 中国农业科学院, 2020. [16] Ran X, Hu F, Mao N, et al. Differences in gene expression and variable splicing events of ovaries between large and small litter size in Chinese Xiang pigs[J]. Porcine Health Management, 2021, 7(1): 52. [17] El-Katatny M H, Gudelj M, Robra K H, et al. Characterization of a chitinase and an endo-beta-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii[J]. Applied Microbiology and Biotechnology, 2001, 56(1-2): 137-143. [18] Mondal S, Thakur A, Fontes C M G A, et al. A trimodular family 16 glycoside hydrolase from the cellulosome of Ruminococcus flavefaciens displays highly specific licheninase (EC3.2.1.73) activity[J]. Microbiology-SGM, 2021, 167(7): 001055. [19] Brunecky R, Alahuhta M, Sammond D W, et al. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure[J]. Biotechnology for Biofuels, 2017, 10: 274. [20] Chen M, Bu L, Alahuhta M, et al. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases[J]. Proteins, 2016, 84(3): 295-304. [21] Shen Z, Zhang S, Xu B. Trichoderma longibrachiatum T6: A nematocidal activity of endochitinase gene exploration and its function identification[J]. International Journal Of Biological Macromolecules, 2022, 223(Pt B): 1641-1652. [22] Yoshimi A, Miyazawa K, Abe K. Cell wall structure and biogenesis in Aspergillus species[J]. Bioscience Biotechnology and Biochemistry, 2016, 80(9): 1700-1711. [23] Jamet E, Canut H, Boudart G, et al. Cell wall proteins: a new insight through proteomics[J]. Trends in Plant Science, 2006, 11(1): 33-39. [24] Katz E, Fon M, Lee Y J, et al. The citrus fruit proteome: insights into citrus fruit metabolism[J]. Planta, 2007, 226(4): 989-1005. [25] Xing S, van Deenen N, Magliano P, et al. ATP citrate lyase activity is post-translationally regulated by sink strength and impacts the wax, cutin and rubber biosynthetic pathways[J]. Plant Journal, 2014, 79(2): 270-284. [26] Li S J, Wang W L, Ma Y C, et al. Citrus CitERF6 contributes to citric acid degradation via upregulation of citaclalpha1, encoding ATP-citrate lyase subunit alpha[J]. Journal of Agricultural and Food Chemistry, 2020, 68(37): 10081-10087. [27] Li Q, Zhu X, Zhao Y, et al. The antifungal activity of o-vanillin against Aspergillus flavus via disrupting ergosterol biosynthesis and promoting oxidative stress, and an RNA-seq analysis thereof[J]. Food Science and Technology/Lebensmittel-Wissenschaft und-Technologie, 2022, 164. [28] Zhang D, Yang Y, Yao B, et al. Curcumin inhibits Aspergillus flavus infection and aflatoxin production possibly by inducing ROS burst[J]. Food Research International, 2023, 167: 112646. [29] 关勇宇, 张旭, 黄圆, 等. 热休克蛋白90在肝细胞癌中的研究进展[J]. 中国细胞生物学学报, 2023, 45(3): 356-363. [30] Lamoth F, Juvvadi P R, Steinbach W J. Heat shock protein 90(Hsp90): A novel antifungal target against Aspergillus fumigatus[J]. Critical Reviews in Microbiology, 2016, 42(2): 310-321. [31] 薛文池, 李笑, 曹顺道, 等. Hsp90作为肿瘤或癌症药物靶点的研究进展[J]. 科技视界, 2019(15): 198-199. [32] Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function and regulation[J]. Nature Reviews Microbiology, 2018, 16(9): 523-539. [33] 李婷. 竹叶花椒挥发油对柏子仁黄曲霉菌的抑制作用研究[D]. 北京: 北京中医药大学, 2020. [34] Tian F, Lee S Y, Woo S Y, et al. Transcriptomic responses of Aspergillus flavus to temperature and oxidative stresses during aflatoxin production. Scientific Reports, 2021, 11(1): 2803. |