[1] Landry D, González-Fuente M, Deslandes L,et al. The large, diverse, and robust arsenal ofRalstonia solanacearumtype III effectors and their in planta functions[J]. Molecular Plant Pathology, 2020, 21(10): 1377-1388. [2] 卢晓虹, 许敏, 李甜爽, 等. 番茄青枯病拮抗菌株的筛选、鉴定及发酵条件的优化[J]. 山西农业科学, 2022, 50(5): 698-708. [3] 蔡毅, 鄢敏, 胡万波, 等. 3种烟草根茎病害防治药剂的筛选[J]. 湖南农业科学, 2022(6): 53-56. [4] Chen Y J, Lin Y S, Chung W H. Bacterial wilt of sweet potato caused byRalstonia solanacearumin Taiwan[J]. Journal of General Plant Pathology, 2012, 78: 80-84. [5] Jiang G, Wei Z, Xu J,et al. Bacterial wilt in China: history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549. [6] 禹山林主编. 中国花生遗传育种学[M]. 上海: 上海科学技术出版社, 2011. [7] 赵倩, 李军民, 雷庭, 等. 嗜酸性PGPR菌株CLB-17的筛选、鉴定及其对烟草青枯病菌的生防活性[J]. 植物保护学报, 2022, 49(2): 528-538. [8] 赖宝春, 姚锦爱, 戴瑞卿, 等. 2株拮抗放线菌复合防治番茄青枯病的研究[J]. 中国生物防治学报, 2021, 37(5): 1035-1040. [9] 许萌杏, 李凤芳, 袁高庆, 等. 洋葱伯克霍尔德氏菌JX−1防治番茄青枯病机理的初步分析[J]. 中国生物防治学报, 2021, 37(2): 304-314. [10] Felnagle E A, Jackson E E, Chan Y A,et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products[J]. Molecular Pharmaceutics, 2008, 5(2): 191-211. [11] Sun D L, Zhuo T, Hu X,et al. Identification of aPseudomonas putida as biocontrol agent for tomato bacterial wilt disease[J]. Biological Control, 2017, 114: 45-50. [12] 王如锋, 陈江峰, 林定山, 等. 番茄枯萎病菌转录因子FolMsn2的生物学功能[J]. 植物保护学报, 2022, 49(2): 486-496. [13] Tans-Kersten J, Huang H, Allen C.Ralstonia solanacearum needs motility for invasive virulence on tomato[J]. Journal of Bacteriology, 2001, 183(12): 3597-3605. [14] Gross H, Loper J E. Genomics of secondary metabolite production byPseudomonas spp[J]. Natural Product Reports, 2009, 26(11): 1408-1446. [15] 宋大伟. 摩氏假单胞菌BS011抗水稻白叶枯病菌活性成分的鉴定及相关基因簇的分析[D]. 北京: 中国农业科学院, 2019. [16] 李广忠. 链霉菌基因组比对及多烯类抗生素合成后修饰酶进化分析[D]. 天津: 天津大学, 2009. [17] Jiang X, Hall A B, Arthur T D,et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut[J]. Science, 2019, 363(6423): 181-187. [18] Korenskaia A E, Shishkina O D, Klimenko A I,et al. NewWolbachia pipientis genotype increasing heat stress resistance ofDrosophila melanogasterhost is characterized by a large chromosomal inversion[J]. International Journal of Molecular Sciences, 2022, 23(24): 16212. [19] Loper J E, Henkels M D, Shaffer, B T,et al. Isolation and identification of rhizoxin analogs fromPseudomonas fluorescens Pf-5 by using a genomic mining strategy[J]. Applied Environmental Microbiology, 2008, 74(10): 3085-3093. [20] Rokni-Zadeh H, Li W, Sanchez-Rodriguez A,et al. Genetic and functional characterization of cyclic lipopeptide white-line-inducing principle (WLIP) production by rice rhizosphere isolatePseudomonas putida RW10S2[J]. Applied and Environmental Microbiology, 2012, 78(14): 4826-4834. [21] Zhao H, Liu Y P, Zhang L Q. In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters inPseudomonasspp. 11K1[J]. Frontiers in Microbiology, 2019, 10: 544. [22] Raaijmakers J M, de Bruijn I, Nybroe O,et al. Natural functions of lipopeptides fromBacillusandPseudomonas: more than surfactants and antibiotics[J]. FEMS Microbiology Reviews, 2010, 34(6): 1037-1062. [23] Roongsawang N, Hase K I, Haruki M,et al. Cloning and characterization of the gene cluster encoding arthrofactin synthetase fromPseudomonassp. MIS38[J]. Chemistry & Biology, 2003, 10(9): 869-880. [24] Kuiper I, Lagendijk E L, Pickford R,et al. Characterization of twoPseudomonas putidalipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms[J]. Molecular Microbiology, 2004, 51(1): 97-113. [25] Gross H, Stockwell V O, Henkels M D,et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters[J]. Chemistry & Biology, 2007, 14(1): 53-63. [26] de Bruijn I, de Kock M J, Yang M,et al. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics inPseudomonasspecies[J]. Molecular Microbiology, 2007, 63(2): 417-428. [27] de Bruijn I, de Kock M J D, de Waard P,et al. Massetolide A biosynthesis inPseudomonas fluorescens[J]. Journal of Bacteriology, 2008, 190(8): 2777-2789. [28] Geudens N, Martins J C. Cyclic lipodepsipeptides fromPseudomonas spp.—biological Swiss-army knives[J]. Frontiers in microbiology, 2018, 9, 1-18. [29] Aiyar P, Schaeme D, García-Altares M,et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells[J]. Nature Communications, 2017, 8(1): 1756. [30] Rainey P B, Brodey C L, Johnstone K. Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogenPseudomonas tolaasii[J]. Physiological and Molecular Plant Pathology, 1991, 39(1): 57-70. [31] Liu R, Zheng R, Liu G,et al. The cyclic lipopeptides suppress the motility ofVibrio alginolyticus via targeting the Na+-driven flagellar motor component MotX[J]. Environmental Microbiology, 2020, 22(10): 4424-4437. |