[1] Meng X, Chai A, Shi Y, et al. Emergence of bacterial soft rot in cucumber caused by Pectobacterium carotovorum subsp. brasiliense in China[J]. Plant Disease, 2017, 101(2): 279-287. [2] Charkowski A O. Biology and control of Pectobacterium in potato[J]. American Journal of Potato Research, 2015, 92(2): 223-229. [3] Yabuuchi E, Kawamura Y, Ezaki T, et al. Burkholderia uboniae sp. nov., L-arabinose-assimilating but different from Burkholderia thailandensis and Burkholderia vietnamiensis[J]. Microbiology and Immunology, 2000, 44(4): 307-317. [4] Mannaa M, Park I, Seo Y. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species[J]. International Journal of Molecular Sciences, 2019, 20(1): 121. [5] Parke J L, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39: 225-258. [6] 宫安东, 朱梓钰, 路亚南, 等. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究[J]. 中国农业科学, 2019, 52(9): 1574-1586. [7] Kim S, Lowman S, Hou G, et al. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN[J]. Biotechnol Biofuels, 2012, 5(1): 37. [8] Ait Barka E, Gognies S, Nowak J, et al. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth[J]. Biological Control, 2002, 24(2): 135-142. [9] El-Banna N, Winkelmann G. Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes[J]. Journal of Applied Microbiology, 1998, 85(1): 69-78. [10] Wang C, Henkes L M, Doughty L B, et al. Thailandepsins: Bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities[J]. Journal of Natural Products, 2011, 74(10): 2031-2038. [11] 王明元, 徐志周, 刘建福, 等. 伯克霍尔德菌HQB-1抑制香蕉枯萎病菌的活性化合物分离鉴定[J]. 微生物学通报, 2021, 48(6): 1965-1975. [12] 孙正祥, 孟祥佳, 龙欣钰, 等. 伯克霍尔德氏菌YZU-S230对西瓜枯萎病的防效及其促生作用[J]. 长江大学学报(自然科学版), 2021, 18(2): 82-88. [13] 黄艺烁, 谢学文, 石延霞, 等. 一株绿针假单胞菌桔黄亚种在防治番茄匍柄霉叶斑病中的应用[J]. 中国生物防治学报, 2021, 37(6): 1265-1275. [14] 黄艺烁, 谢学文, 石延霞, 等. 多粘类芽胞杆菌ZF197对白菜茎基腐病防治效果[J]. 园艺学报, 2020, 47(6): 1059-1071. [15] 赵子璇, 曾先锋, 覃诗扬, 等. 贝莱斯芽胞杆菌ZF438菌株的鉴定及其发酵上清液对辣椒炭疽病的抑菌作用[J]. 农业生物技术学报, 2023, 31(10): 2163-2175. [16] Jacobs J L, Fasi A C, Ramette A, et al. Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil[J]. Applied and Environmental Microbiology. 2008, 74(10): 3121-3129. [17] 张立新, 苏婷, 谢关林. 洋葱伯克氏菌群不同基因型菌株对几种重要植物病原真菌的抑制作用及其潜在致病性[J]. 中国生物防治, 2009, 25(1): 25-29. [18] Jiao Z, Wu N, Hale L, et al. Characterisation of Pseudomonas chlororaphis subsp. aurantiaca strain Pa40 with the ability to control wheat sharp eyespot disease[J]. Annals of Applied Biology, 2013, 163(3): 444-453. [19] Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1): 47-56. [20] Kasana R C, Salwan R, Dhar H, et al. A Rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine[J]. Current Microbiology, 2008, 57(5): 503-507. [21] 张清霞, 张迎, 何玲玲, 等. 水稻纹枯病拮抗细菌7-5的鉴定及其生防机制初步研究[J]. 中国水稻科学, 2018, 32(3): 277-284. [22] Charkowski A O. The changing face of bacterial soft-rot diseases[J]. Annual Review of Phytopathology, 2018, 56: 269-288. [23] Maimone N M, de Oliveira L F P, Santos S N, et al. Elicitation of Streptomyces lunalinharesii secondary metabolism through co-cultivation with Rhizoctonia solani[J]. Microbiological Research, 2021, 251: 126836. [24] Lapidot D, Dror R, Vered E, et al. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis[J]. Plant Pathology, 2015, 64(3): 545-551. [25] 贺字典, 闫立英, 石延霞, 等. 产生ACC脱氨酶的PGPR种衣剂对黄瓜细菌性茎软腐病的防治效果[J]. 中国生物防治学报, 2017, 33(6): 817-825. [26] 赵昱榕, 谢学文, 许帅, 等. 皮尔瑞俄类芽胞杆菌ZF390对黄瓜细菌性软腐病的防治效果[J]. 中国生物防治学报, 2022, 38(2): 476-486. [27] 孙正祥, 孟祥佳, 龙欣钰, 等. 伯克霍尔德氏菌YZU-S230对西瓜枯萎病的防效及其促生作用[J]. 长江大学学报(自然科学版), 2021, 18(2): 82-88. [28] Bevivino A, Dalmastri C, Tabacchioni S, et al. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize[J]. Biology and Fertility of Soils, 2000, 31(3-4): 225-231. [29] 许萌杏, 李凤芳, 袁高庆, 等. 洋葱伯克霍尔德氏菌JX-1防治番茄青枯病机理的初步分析[J]. 中国生物防治学报, 2021, 37(2): 304-314. [30] Bevivino A, Peggion V, Chiarini L, et al. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations[J]. Research in Microbiology, 2005, 156(10): 974-983. [31] 牟蕾, 衣静莉, 李星志, 等. 一株高拮抗活性菌株的鉴定及其抗菌活性缺失突变体的获得[J]. 山东农业科学, 2018, 50(7): 126-132. [32] Tao H, Wang S, Li X, et al. Biological control of potato common scab and growth promotion of potato by Bacillus velezensis Y6[J]. Frontiers in Microbiology, 2023, 14: 1295107. [33] Siddiqui I A, Shahid Shaukat S. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol[J]. Soil Biology and Biochemistry, 2003, 35(12): 1615-1623. [34] 吴丽娟, 韩聪, 王惠梅, 等. 伯克霍尔德氏菌JP2-270抗水稻纹枯病菌机理的初步研究[J]. 中国生物防治学报, 2022, 38(1): 230-241. [35] Parke J L, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39: 225-258. [36] Rodrguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances, 1999, 17(4): 319-339. [37] Ghosh R, Barman S, Mukherjee R, et al. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India[J]. Microbiological Research, 2016, 183: 80-91. |