Chinese Journal of Biological Control ›› 2025, Vol. 41 ›› Issue (2): 492-500.DOI: 10.16409/j.cnki.2095-039x.2025.03.003
• TECHNICAL REVIEWS • Previous Articles
LI Sirui1,2, YANG Yanchao2, WU Guoxing1, WANG Zeyu2
Received:
2024-03-19
Published:
2025-04-19
CLC Number:
LI Sirui, YANG Yanchao, WU Guoxing, WANG Zeyu. The Defense Response Mechanisms of Host Midgut to Bacillus thuringiensis and Its Pesticidal Proteins[J]. Chinese Journal of Biological Control, 2025, 41(2): 492-500.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2025.03.003
[1] Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection[J]. FEMS Microbiology Reviews, 2013, 37(1): 3-22. [2] de la Fuente-Salcido N M, Casados-Vázquez L E, Barboza-Corona J E. Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide[J]. Canadian Journal of Microbiology, 2013, 59(8): 515-522. [3] de Maagd R A, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world[J]. Trends in Genetics, 2001, 17(4): 193-199. [4] Warren G W, Koziel M G, Mullins M A. Method for ioslating vegetative insecticidal protein genes[P]. World Intel-lectual Property Organization Patent, 1998. [5] Gupta M, Kumar H, Kaur S. Vegetative insecticidal protein (Vip): A potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests[J]. Frontiers in Microbiology, 2021, 12: 659736. [6] Lee M K, Walters F S, Hart H, et al. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin[J]. Applied and Environmental Microbiology. 2003, 69: 4648-4657. [7] Donovan W P, Donovan J C, Engleman J T. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua[J]. Journal of Invertebrate Pathology, 2001, 78(1): 45-51. [8] Tabashnik B E, Carrière Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926-935. [9] Bravo A, Likitvivatanavong S, Gill S S, et al. Bacillus thuringiensis: A story of a successful bioinsecticide[J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 423-431. [10] Chakroun M, Ferr é J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling[J]. Applied and Environmental Microbiology, 2014, 80(20): 6258-6265. [11] Oppert B, Kramer K J, Beeman R W, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins[J]. The Journal of Biological Chemistry,1997, 272(38): 23473-23476. [12] Li H, Oppert B, Higgins R A, et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae)[J]. Insect Biochemistry and Molecular Biology, 2004, 34(8): 753-762. [13] Regev A, Keller M, Strizhov N, et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae[J]. Applied and Environmental Microbiology, 1996, 62(10): 3581-3586. [14] Li Y J, L Y L, Mihiretie H M, et al. Structural basis of the pore-forming toxin/membrane interaction[J]. Toxins, 2021, 13(2): 128- 128. [15] Matteo P D, Gisou F G D V. Pore-forming toxins: ancient, but never really out of fashion[J]. Nature Reviews. Microbiology, 2016, 14(2): 77-92. [16] Mendoza P, Díaz J, Torres V A. On the role of Rab5 in cell migration[J]. Current Molecular Medicine, 2014, 14(2): 235-245. [17] Vega-Cabrera A, Cancino-Rodezno A, Porta H, et al. Aedes aegypti Mos20 cells internalizes cry toxins by endocytosis, and actin has a role in the defense against Cry11Aa toxin[J]. Toxins (Basel), 2014, 6(2): 464-487. [18] Los F C O, Randis T M, Aroian R V, et al. Role of pore-forming toxins in bacterial infectious diseases[J]. Microbiology and Molecular Biology Reviews, 2013, 77(2): 173-207. [19] FigDraw (https://www.figdraw.com). [20] Fletcher S J, Rappoport J Z. The role of vesicle trafficking in epithelial cell motility[J]. Biochemical Society Transactions, 2009, 37(5): 1072-1076. [21] Li G, Marlin M C. Rab family of GTPases[J]. Methods in Molecular Biology, 2015, 1298: 1-15. [22] Los F C O, Kao C Y, Smitham J, et al. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin[J]. Cell Host & Microbe, 2011, 9(2): 147-157. [23] Hsieh H C, Huang I H, Chang S W, et al. PRMT-7/PRMT7 activates HLH-30/TFEB to guard plasma membrane integrity compromised by bacterial pore-forming toxins[J]. Autophagy, 2024, 20(6): 1335-1358. [24] Schütter M, Giavalisco P, Brodesser S, et al. Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy[J]. Cell, 2020, 180(1): 135-149. [25] Parzych K R, Klionsky D J. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxidants & Redox Signaling, 2014, 20: 460-473 [26] Fimia G M, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis[J]. Cellular and Molecular Life Sciences, 2010, 67(10):1581-1588. [27] Chen H D, Kao C Y, Liu B Y, et al. HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans[J]. Autophagy, 2017, 13(2): 371-385. [28] Visvikis O, Ihuegbu N, Labed S A, et al. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes[J]. Immunity, 2014, 40: 896-909. [29] Yang Y B, Huang X Y, Yuan W L, et al. Bacillus thuringiensis cry toxin triggers autophagy activity that may enhance cell death[J]. Pesticide Biochemistry and Physiology, 2021, 171: 104728. [30] Yang Z F, Klionsky D J. Mammalian autophagy: core molecular machinery and signaling regulation[J]. Current Opinion in Cell Biology, 2010, 22(2): 124-131. [31] Gai Z C, Zhang X J, Mayira L, et al. Characterization of Atg8 in lepidopteran insect cells[J]. Archives of Insect Biochemistry and Physiology, 2013, 84(2): 57-77. [32] Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies[J]. Aging, 2016, 8(4): 603-619. [33] Shelby K, Popham H, Clem R J, et al. Antiviral responses in insects: apoptosis and humoral responses[M]. Caister Academic Press, 2010. [34] Shiho T, Yasutaka Y, Ryoichi S. Response of midgut epithelial cells to Cry1Aa is toxin-dependent and depends on the interplay between toxic action and the host apoptotic response[J]. The FEBS journal, 2012, 279(6): 1071-1079. [35] Loeb M J, Hakim R S, Martin P, et al. Apoptosis in cultured midgut cells from Heliothis virescens larvae exposed to various conditions[J]. Archives of Insect Biochemistry and Physiology, 2000, 45(1): 12-23. [36] Hernandez-Martinez P, Gomis-Cebolla J, Ferre J, et al. Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins[J]. Science Report, 2017, 7: 16245. [37] Smouse D, Nishiura J. A Bacillus thuringiensis delta-endotoxin induces programmed cell death in mosquito larvae[J]. Cell Death & Differentiation, 1997, 4(7): 560-569. [38] Portugal L, Gringorten J L, Caputo G F, et al. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1[J]. Peptides, 2014, 53: 292–299. [39] Kim D H, Liberati N T, Mizuno T, et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10990-10994. [40] Spies A G, Spence K D. Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study[J]. Tissue & Cell, 1985, 17(3): 379-394. [41] Loeb M J, Martin P A, Hakim R S, et al. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis[J]. Journal of Insect Physiology, 2001, 47(6): 599-606. [42] Wang Z Y, Yang Y C, Li S R, et al. JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis[J]. PLoS Pathogenes, 2024, 20(1): e1011823. [43] Buchon N, Broderick N A, Chakrabarti S, et al. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila[J]. Genes & Development, 2009, 23(19): 2333-2344. [44] Chiang A S, Yen D F, Peng W K. Defense reaction of midgut epithelial cells in the rice oth larva (Corcyra cephalonica) infected with Bacillus thuringiensis[J]. Journal of Invertebrate Pathology, 1986, 47: 333-339. [45] Dong C, Davis R J, Flavell R A. Map kinases in the immune response[J]. Annual Review of Immunology, 2002, 20: 55-72. [46] Roux P P, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions[J]. Microbiology and Molecular Biology Reviews, 2004, 68: 320-344. [47] Zhang W, Liu H T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells[J]. Cell Research, 2002, 12(1): 9-18. [48] Cancino-Rodezno A, Alexander C, Villaseñor R, et al. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis[J]. Insect Biochemistry and Molecular Biology. 2010, 40(1): 58-63. [49] Canton P E, Cancino-Rodezno A, Gill S S, et al. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis[J]. BMC Genomics, 2015, 16: 1042. [50] Guo L, Cheng Z, Qin J, et al. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression[J].PLoS genetics, 2022, 18(2), e1010037. [51] Qiu L, Fan J X, Liu L, et al. Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin[J]. Scientific Reports, 2017, 7: 43964. [52] Lin J H, Yu X Q, Wang Q, et al. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella[J]. Developmental and Comparative Immunology, 2020, 107: 103661. [53] Ji Y J, Gao B, Zhao D, et al. Involvement of Sep38β in the insecticidal activity of Bacillus thuringiensis against beet armyworm, Spodoptera exigua (Lepidoptera)[J]. Journal of Agricultural and Food Chemistry, 2024. [54] Huffman D L, Abrami L, Sasik R, et al. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10995-11000. [55] Guo Z J, Kang S, Chen D F, et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth[J]. PLoS Genetics, 2015, 11(4): e1005124. [56] De Bortoli C P, Jurat-Fuentes J L. Mechanisms of resistance to commercially relevant entomopathogenic bacteria[J]. Current Opinion in Insect Science, 2019, 33: 56-62. [57] Liu L, Li Z, Luo X, et al. Which is stronger? A continuing battle between Cry toxins and insects[J]. Frontiers in Microbiology, 2021, 12665101. [58] Current and previously registered Section 3 plant-incorporated protectant (PIP) registrations. Rep. United States Environmental Protection Agency, Washington. http://www.epa. gov/ingredients-used-pesticide-products/current-previously-registered-section-3- plantincorporated. [59] Huang F. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: lessons and implications for Bt corn IRM in China[J]. Insect science, 2021, 28(3), 574-589. [60] BlancoC A, AndowD A, Abel C A, et al. Bacillus thuringiensis Cry1Ac resistance frequency in tobacco budworm (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology, 2009, 102(1): 381-387. [61] González J C S, Kerns D L, Head G P, et al. Status of Cry1Ac and Cry2Ab2 resistance in field populations of Helicoverpa zea in Texas, USA[J]. Insect Science, 2022, 29(2): 487-495. [62] Siegfried B D, Rangasamy M, Wang H, et al. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae)[J]. Pest Management Science, 2014, 70(5): 725-733. [63] Gassmann A J, Shrestha R B, Kropf A L, et al. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize[J]. Pest Management Science, 2020, 76(1): 268-276. [64] Reinders J D, Reinders E E, Robinson E A, et al. Evidence of western corn rootworm (Diabrotica virgifera virgifera LeConte) fieldevolved resistance to Cry3Bb1+Cry34/35Ab1 maize in Nebraska[J]. Pest Management Science, 2022, 78(4): 1356-1366. [65] Dively G P, Venugopal P D, Bean D, et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13): 3320-3325. [66] Tabashnik B E, Liesner L R, Ellsworth P C, et al. Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(1): e2019115118. [67] Kim H Y, Issa S M, Cooper M A, et al. RNA interference: Applications and advances in insect toxicology and insect pest management[J]. Pesticide Biochemistry and Physiology, 2015, 120109-120117. [68] Head G P, Carroll M W, Evans S P, et al. Evaluation of SmartStax and SmartStaxPRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management[J]. Pest Management Science, 2017, 73(9): 1883-1899. |
[1] | MA Shiyan, HAN Yutong, LIU Xiaoli, ZHANG Xinxin, YU Hongchun. Ultraviolet Irradiation of Bacillus thuringiensis Bt64 and Its Pathogenicity to Naranga aenescens [J]. Chinese Journal of Biological Control, 2024, 40(6): 1275-1284. |
[2] | FENG Shuo, HUANG Guoqiang, CHENG Jiaxu, CAO Weiping, SONG Jian. Cloning, Expression and Analysis of Insecticidal Activity of a Novel cry39A-like and cry40-like Gene from Bacillus thuringiensis [J]. Chinese Journal of Biological Control, 2024, 40(6): 1406-1413. |
[3] | WU Shengyong, ZHANG Mengdi, XU Jin, WANG Endong, CUI Li, LEI Zhongren, SHI Xiaobin, XIE Xuewen, WANG Shaoli, WANG Su, WEI Shujun, MA Zhongzheng, HE Limei, GAO Yulin. The Characteristic of Plant Diseases and Insect Pests in Greenhouse Horticulture and Its Green Control Strategy of China [J]. Chinese Journal of Biological Control, 2024, 40(5): 1169-1180. |
[4] | XU Guoli, WANG Zeyu, WANG Kui, SHU Changlong, GENG Lili, LIAO Ming, ZHANG Jie. Advances in Research and Application of Bacillus thuringiensis for Controlling Spodoptera frugiperda [J]. Chinese Journal of Biological Control, 2024, 40(5): 1181-1193. |
[5] | ZHUO Fuyan, CHEN Xuexin, XIA Yuxian, FU Qiang, WANG Su, XU Hongxing, HU Fei, ZHANG Jie. The Occurrence Characteristics of Rice Diseases and Insect Pests and the Integration of Green Control Technology in China from 2013 to 2022 [J]. Chinese Journal of Biological Control, 2024, 40(5): 1207-1213. |
[6] | JIANG Zhengxiong, CHEN Heng, SUN Ying, ZHOU Shunwen, ZHANG Jinlong, CHEN Guohua, ZHU Qingqing, ZHANG Xiaoming. Effect of Bacillus thuringiensis G033A on the Ability of Three Trichogramma Species to Parasitize Tuta absoluta [J]. Chinese Journal of Biological Control, 2024, 40(3): 524-531. |
[7] | BIAN Qiang, YU Shujing, SUN Xiaodong. Identification and Field Control Efficiency of High Virulence Bt Strain against Phyllotreta striolata [J]. Chinese Journal of Biological Control, 2024, 40(2): 484-490. |
[8] | CHENG Jiaxu, FENG Shuo, HAO Xinyi, SU Ya, CAO Weiping, LI Yaofa, JIA Haimin, SONG Jian. Occurrence,Identification and Control of Bradysia odoriphaga on Atractulodes chinensis(DC.) Koidz [J]. Chinese Journal of Biological Control, 2024, 40(2): 491-496. |
[9] | YAN Xueying, WANG Hui, ZHANG Yanjun, ZHAO Jianning, YANG Dianlin, ZHANG Guilong. Research Progress on Ecological Regulation to Crop Pests using Agricultural Biodiversity [J]. Chinese Journal of Biological Control, 2023, 39(3): 710-717. |
[10] | LIAO Xianqing, MIN Yong, RAO Ben, ZHOU Ronghua, CHEN Wei, LIU Xiaoyan. Development of High Content Suspension of Nematocidal Bacillus thuringiensis NBIN-863 [J]. Chinese Journal of Biological Control, 2023, 39(1): 54-61. |
[11] | LI Mingjiang, YANG Shaowu, SHANG Haopei, ZHOU Shunwen, LIU Jihuan, LI Guitao, CHEN Guohua, ZHANG Xiaoming. Population Dynamics of Bemisia tabaci and Its Dominant Natural Enemies on Summer Tomato under Different Planting Environments [J]. Chinese Journal of Biological Control, 2023, 39(1): 18-28. |
[12] | LIU Fang, WU Hongqu, WEN Shaohua, FANG Wei, WANG Kaimei. The Application Potential of Brevibacillus laterosporus in Agriculture [J]. Chinese Journal of Biological Control, 2023, 39(1): 231-240. |
[13] | SHU Changlong, ZHANG Xian, WANG Kui, CAO Beibei, ZHANG Jie. A Preliminary Study on the Effects of Several Frequently Used Chemical Insecticides on the Growth of Diverse Bacillus thuringiensis Strains [J]. Chinese Journal of Biological Control, 2022, 38(5): 1166-1173. |
[14] | MA Yue, LIU Na, XIE Yanbo, LIANG Jingang, LI Feiwu. Progress on the Effect of Transgenic Insect-Resistant Maize on Biodiversity of Arthropods [J]. Chinese Journal of Biological Control, 2022, 38(5): 1135-1142. |
[15] | CONG Shengbo, XU Dong, YANG Nina, WANG Ling, WANG Jintao, LIU Weiguo, YANG Tiantian, WAN Peng. Population Dynamics and Temporal Niches of Major Pests and Their Natural Enemies in Okra Fields [J]. Chinese Journal of Biological Control, 2022, 38(3): 753-759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||