Chinese Journal of Biological Control ›› 2023, Vol. 39 ›› Issue (1): 231-240.DOI: 10.16409/j.cnki.2095-039x.2023.02.013
• TECHNICAL REVIEWS • Previous Articles Next Articles
LIU Fang, WU Hongqu, WEN Shaohua, FANG Wei, WANG Kaimei
Received:
2022-07-01
Online:
2023-02-08
Published:
2023-02-21
CLC Number:
LIU Fang, WU Hongqu, WEN Shaohua, FANG Wei, WANG Kaimei. The Application Potential of Brevibacillus laterosporus in Agriculture[J]. Chinese Journal of Biological Control, 2023, 39(1): 231-240.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2023.02.013
[1] Laubach A C. Studies on aerobic spore-bearing non-pathogenic bacteria Part II spore-bearing bacteria in dust[J]. Journal of Bacteriology, 1916, 1:493-533. [2] Laubach A C. Studies on aerobic, sporebearing, non pathogenic bacteria. Spore bearing organism in water[J]. Journal of Bacteriology, 1916, 1:505-512. [3] Shida O, Takagi H, Kadowaki K, et al. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.[J]. International Journal of Systemic Bacteriology, 1996, 46(4):939-946. [4] Hannay C L. The parasporal body of Bacillus laterosporus Laubrach[J]. Journal of Biophysics and Biochemistry, 1957, 3(6):1001-1019. [5] Fitz-James P, Young I E. Morphological and chemical studies of the spores and parasporal bodies of Bacillus laterosporus[J]. Journal of Biophysics and Biochemistry, 1958, 4(5):639-659. [6] Smirnova T A, Minenkova I B, Orlova M V, et al. The crystal-forming strains of Bacillus laterosporns[J]. Research in Microbiology, 1996, 147:343-350. [7] Ruiu L. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species[J]. Insects, 2013, 4(3):476-492. [8] Zubasheva M V, Ganushkina L A, Smirnova T A, et al. Larvicidal activity of crystal-forming strains of Brevibacillus laterosporus[J]. Applied Biochemistry and Microbiology, 2010, 46(8):755-762. [9] Ferreira V, Barcellos I D S, Carramaschi I N, et al. Larvicidal activity and effects on post embrionary development of laboratory reared Musca domestica (Linnaeus, 1758) (Diptera:Muscidae), treated with Brevibacillus laterosporus (Laubach) spore suspensions[J]. Journal of Invertebrate Pathology, 2016, 137:54-57. [10] Ruiu L, Satta A, Floris I. Observations on house fly larvae midgut ultrastructure after Brevibacillus laterosporus ingestion[J]. Journal of Invertebrate Pathology, 2012, 111:211-216. [11] Marche M G, Mura M E, Falchi G, et al. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis[J]. Scientific Reports, 2017, 7:43805. [12] Marche M G, Camiolo S, Porceddu A, et al. Survey of Brevibacillus laterosporus insecticidal protein genes and virulence factors[J]. Journal of Invertebrate Pathology, 2018, 155:38-43. [13] De Jong, E V Z, Roush T L, Glare T R, et al. Discovery of two Brevibacillus laterosporus isolates from brassica with insecticidal properties against diamondback moth[J]. Biocontrol Science and Technology, 2016, 26(3):426-431. [14] Ormskirk M M, Narciso J, Hampton J G, et al. Endophytic ability of the insecticidal bacterium Brevibacillus laterosporus in Brassica[J]. PLoS One, 2019, 14(5):e0216341. [15] Ecolibrium Biogolicals has received EPA registration for Lateral™[EB/OL]. https://www.ecolibriumbiologicals.com/news/.releasedatFeb24,2022. [16] Glare T R, Hampton J G, Coc, M P, et al. Novel strains of Brevibacillus laterosporus as biocontrol agents against plant pests, particularly Lepidoptera and Diptera[P]. EU Patent No. EP 2 906 044 B1. European Patent Office, date of filing:Jun 24, 2013. [17] Prasanna L, Eijsink V G, Meadow R, et al. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential[J]. Applied Microbiology and Biotechnology, 2013, 97(4):1601-1611. [18] Rivers D B, Vann C N, Zimmack H L, et al. Mosquitocidal activity of Bacillus laterosporus[J]. Journal of Invertebrate Pathology, 1991, 58:444-447. [19] Orlova M V, Smirnova T A, Ganushkina L A, et al. Insecticidal Activity of Bacillus laterosporus. Applied and Environmental Microbiology, 1998, 64(7):2723-2725. [20] Bashir F, Aslam S, Khan R A, et al. Larvicidal activity of Bacillus laterosporus against mosquitoes[J]. Pakistan Journal of Zoology, 2016, 48(1):281-284. [21] Ruiu L, Delrio G, Ellar D J, et al. Lethal and sublethal effects of Brevibacillus laterosporus on the housefly[J]. Entomologia Experimentalis et Applicata, 2006, 118:137-144. [22] Ruiu L, Floris I, Satta, A, et al. Toxicity of a Brevibacillus laterosporus strain lacking parasporal crystals against Musca domestica and Aedes aegypti[J]. Biological Control, 2007, 43:136-143. [23] Bedini S, Muniz E R, Tani C, et al. Insecticidal potential of Brevibacillus laterosporus against dipteran pest species in a wide ecological range[J]. Journal of Invertebrate Pathology, 2020, 177:107493. [24] Ruiu L, Satta A, Floris I. Observations on house fly larvae midgut ultrastructure after Brevibacillus laterosporus ingestion[J]. Journal of Invertebrate Pathology, 2012, 111(3):211-216. [25] Floris I, Ruiu L, Satta A, et al. Brevibacillus laterosporus strain compositions containing the same and method for the biological control of dipers[P]. USA Patent Application Publication, Pub. No. US2010/0003227 A1, US Patent and Trademark Office, Publication. date:Jan 7, 2010. [26] Ruiu L, Satta A, Floris I. Administration of Brevibacillus laterosporus spores as a poultry feed additive to inhibit house fly development in feces:a new eco-sustainable concept[J]. Poultry Sciences, 2014, 93(3):519-526. [27] Favret M E, Yousten A A. Insecticidal Activity of Bacillus laterosporus[J]. Journal of Invertebrate Pathology, 1985, 45:195-203. [28] Carramaschi I N, de Andrade P L, Dos Santos B V, et al. Laboratory evaluation of Brevibacillus laterosporus strains as biocidal agents against Chrysomya megacephala (Fabricius, 1794) (Diptera:Calliphoridae) larvae[J]. Journal of Invertebrate Pathology, 2017, 146:69-72. [29] Carramaschi I N, Pereira Lde A, Queiroz M M, et al. Preliminary screening of the larvicidal effect of Brevibacillus laterosporus strains against the blowfly Chrysomya megacephala (Fabricius, 1794) (Diptera:Calliphoridae)[J]. Revista da Sociedade Brasileira Medicina Tropical, 2015, 48(4):427-431. [30] Pereira L A, Junqueira R M, Carramaschi I N, et al. Bioactivity under laboratory conditions of Brevibacillus laterosporus towards larvae and adults of Chrysomya putoria (Diptera:Calliphoridae)[J]. Journal of Invertebrate Pathology, 2018, 158:52-54. [31] Pessanha R R, Carramaschi I N, Dos Santos M J R, et al. Evaluation of larvicidal activity and effects on post embrionary development of laboratory reared Lucilia cuprina (Wiedemann, 1830) (Diptera:Calliphoridae), treated with Brevibacillus laterosporus[J]. Journal of Invertebrate Pathology, 2015, 128:44-46. [32] 张书方, 万玉玲, 崔景岳, 等. 侧孢芽孢杆菌对蛴螬的致病性试验[J]. 昆虫学报, 1983, 26(4):419-427. [33] Salama H S, Foda M S, El-Bendary M A, et al. Infection of red palm weevil, Rhynchophorus ferrugineus, by spore-forming bacilli indigenous to its natural habitat in Egypt[J]. Journal of Pest Science, 2004, 77(1):27-31. [34] De Oliveira E J, Rabinovitch L, Monnerat R G, et al. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control[J]. Applied and Environmental Microbiology, 2004, 70(11):6657-6664. [35] Schnepf H E, Narva K E, Stockhoff B A, et al. Pesticidal toxins and genes from Bacillus laterosporus strains[P]. USA Patent No. US 6297369 B1, 2001. US Patent and Trademark Office, date of patent:Oct. 2, 2001. [36] Bowen D J, Chay C A, Flasinski S, et al. Novel insect inhibitory proteins[P]. US Patent Application Publication, Pub No. US 20170044568 A1, Publication date:Feb 16, 2017. [37] Bowen D, Yin Y, Flasinski S, et al. Cry75Aa (Mpp75Aa) Insecticidal proteins for controlling the western corn rootworm, Diabrotica virgifera virgifera, (Coleoptera:Chrysomelidae), isolated from the insect pathogenic bacteria Brevibacillus laterosporus[J]. Applied and Environmental Microbiology, 2020, 87(5):e02507-20. [38] Kouadio J L, Duff S, Aikins M, et al. Structural and functional characterization of Mpp75Aa1.1, a putative beta-pore forming protein from Brevibacillus laterosporus active against the western corn rootworm[J]. PLoS ONE, 2021, 16(10):e0258052. [39] Javed K, Javed H, Qiu D. Biocontrol potential of purified elicitor protein PeBL1 extracted from Brevibacillus laterosporus strain A60[J]. Biology, 2020, 9:179. [40] Javed K, Qiu D. Protein elicitor PeBL1 of Brevibacillus laterosporus enhances resistance against Myzus persicae in tomato[J]. Pathogens, 2020, 9:57. 9010057. [41] Basit A, Farhan M, Abbas M, et al. Do microbial protein elicitors PeaT1 obtained from Alternaria tenuissima and PeBL1 from Brevibacillus laterosporus enhance defense response against tomato aphid (Myzus persicae)?[J]. Saudi Journal of Biological Sciences, 2021, 28(6):3242-3248. [42] Javed K, Javed H, Qiu D. PeBL1 of Brevibacillus laterosporus a new biocontrol tool for wheat aphid management (Sitobion avenae) in Triticum aestivum[J]. International Journal of Tropical Insect Sciences, 2022, 42:535-544. [43] Singer S, van Fleet A L, Viel J J, et al. Biological control of the zebra mussel Dreissena polymorpha and the snail Biomphalaria glabrata, using Gramicidin S and D and molluscicidal strains of Bacillus[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18:226-231. [44] Alippi A M, Reynaldi F J. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources[J]. Journal of Invertebrate Pathology, 2006, 91(3):141-146. [45] Chen S, Zhang M, Wang J, et al. Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities[J]. Biological Control, 2017, 106:89-98. [46] Li C, Shi W, Wu D, et al. Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community[J]. Biological Control, 2021, 153:104496. [47] Ghadbane M, Harzallah D, Laribi A I, et al. Purification and biochemical characterization of a highly thermostable bacteriocin isolated from Brevibacillus brevis strain GM100[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(1):151-160. [48] Kakar K U, Nawaz Z, Cui Z, et al. Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1[J]. World Journal of Microbiology and Biotechnology, 2014, 30(2):469-478. [49] 李伟杰, 姜瑞波. 侧孢短芽孢杆菌X10拮抗物质的提取和特性分析[J]. 生物学杂志, 2006, 23(5):16-19. [50] 李伟杰, 姜瑞波. 番茄青枯病拮抗菌的筛选[J]. 微生物学杂志, 2007, 27(1):5-8. [51] 李伟杰, 姜瑞波. 番茄青枯病拮抗菌X10的鉴定和田间应用[J]. 中国土壤与肥料,2007(5):60-63. [52] Jiang H, Wang X, Xiao C, et al. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components[J]. World Journal of Microbiology and Biotechnology, 2015, 31(10):1605-1618. [53] Saikia R, Gogoi D K, Mazumder S, et al. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India[J]. Microbiological Research, 2011, 166(3), 216-225. [54] Song Z, Liu K, Lu C, et al. Isolation and characterization of a potential biocontrol Brevibacillus laterosporus[J]. Afrian Journal of Microbiology Research, 2011, 5(18):2675-2681. [55] Zhao J, Guo L, Zeng H, et al. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60[J]. Peptides, 2012, 33(2):206-211. [56] 白小宁, 李友顺, 杨锚, 等. 2019年我国登记的新农药[J]. 农药, 2020, 59(3):157-165. [57] Jatoi G S, Guo L, Yang X, et al. A novel protein elicitor PeBL2, from Brevibacillus laterosporus A60, induces systemic resistance against Botrytis cinerea in tobacco plant[J]. Plant Pathology Journal, 2019, 35(3):208-218. [58] 陈潺, 陈升富, 王建宇, 等. 侧孢短芽孢杆菌AMCC100017的分离鉴定及其生防潜力[J]. 微生物学通报, 2014, 41(11):2275-2282. [59] 赵秀香, 吴元华, 李晔. 拮抗细菌B8对烟草黑胫病的抑制作用及其菌株鉴定[J]. 中国生物防治, 2007, 23(1):54-59. [60] 李悦, 余惠荣, 李蔚, 等. 侧孢短芽孢杆菌B8对两种植物病原菌抗菌机制初步研究[J]. 中国植保导刊, 2015, 35(3):12-16. [61] 余惠荣, 李悦, 李晓菲, 等. 侧孢短芽孢杆菌B8抑菌物质的理化性质及其分离纯化[J]. 沈阳农业大学学报, 2015, 46(4):398-403. [62] 李蔚, 赵秀香, 徐千惠, 等. 侧孢短芽孢杆菌B8胞外抗菌蛋白对辣椒立枯病抗病机制的研究[J]. 中国植保导刊, 2016, 36(10):5-9. [63] 刘亚苓, 于营, 崔丽丽, 等. 细辛叶枯病生防细菌的筛选、鉴定及其防效测定[J]. 中国中药杂志, 2020, 45(5):1-8. [64] 刘亚苓, 于营, 鲁海坤, 等. 侧孢短芽孢杆菌S2-31拮抗下细辛叶枯病菌转录组差异表达分析[J]. 生物技术通报, 2021, 37(2):17-28. [65] 孙一凡, 刘喆, 李海洋, 等. 侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制[J]. 应用生态学报, 2021, 32(1):299-308. [66] Gangavaramu L P. A chitinase from Brevibacillus laterosporus, its production and use thereof[P]. International Publication No:WO 2013/050867 A2, World Intellectual Property Organization, International publication date:April 11, 2013 [67] 厉彦芳, 王春阳, 谢菁菁, 等. 侧孢短芽孢杆菌B8抑制植物病毒及促进番茄生长作用研究[J]. 中国植保导刊, 2019, 39(7):11-16. [68] Li Y, Jiao Y, Shi J, et al. BLB8, an antiviral protein from Brevibacillus laterosporus strain B8, inhibits tobacco mosaic virus infection by triggering immune response in tobacco[J]. Pest Management Science, 2021, 77(10):383-4392. [69] Huang X, Tian B, Niu Q, et al. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes[J]. Research in Microbiology, 2005, 156(5-6):719-727. [70] Tian B, Li N, Lian L, et al. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4[J]. Archives of Microbiology, 2006, 186:29-305. [71] Tian B, Yang J, Lian L, et al. Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4[J]. Applied Microbiology and Biotechnology, 2007, 74(2):372-380. [72] 杜春梅, 葛菁萍, 李文祥, 等. 侧孢芽孢杆菌生物种衣剂防治大豆胞囊线虫[C]. 2008年中国微生物学会学术年会, 海南省海口, 2008, 11. [73] Porubean R S. Bacillus laterosporus strain CM-3 for promoting grain crop yields[P]. USA Patent Application Publication No. US 2003/0045428 A1, US Patent and Trademark Office, Publication date:Mar 6, 2003 [74] 朱金英, 张书良, 郭建军, 等. 海洋侧孢短芽孢杆菌(AMCC 100018)对设施黄瓜的应用效应研究[J]. 长江蔬菜, 2014(14):62-65. [75] Wang X, Zhang J, Wang X, et al. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta[J]. Horticultural Plant Journal, 2022, 8(1):22-34. [76] O'Donnell B. Treatment of soil and plants with a composition containing Bacillus laterosporus[P]. USA Patent No. 5702701, US Patent and Trademark Office, date of patent:Dec 30, 1997 [77] 苗素平. 不同浓度侧孢短芽孢杆菌对土壤与作物生长的影响[J]. 济宁学院学报, 2016, 37(6):38-42. [78] Kakar K U, Ren X I, Nawaz Z, et al. A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice[J]. Plant Biology, 2016, 18, 471-483. [79] Wolfenden R E, Pumford N R, Morgan M J, et al. Evaluation of selected direct-fed microbial candidates on live performance and Salmonella reduction in commercial turkey brooding houses[J]. Poultry Sciences, 2011, 90(11):2627-2631. [80] Zouboulis A I, Loukidou M X, Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils[J]. Process Biochemistry. 2004, 39:909-916. [81] Kulkarni R M, Shetty K V, Srinikethan G. Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628)[J]. Journal of Taiwan Institute of Chemical Engineers, 2014, 45:1628-1635. [82] 杨孝军, 黄怡, 邱宗清, 等. 农田高效砷氧化侧胞短芽胞杆菌的分离、鉴定及其对水稻砷毒害的修复作用[J]. 福建农林大学学报(自然科学版), 2014, 43(2):172-177. [83] Yang G D, Xie W Y, Zhu X, et al. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings[J]. Ecotoxicology and Environmental Safety, 2015, 120:7-12. [84] 宫占元,王艳杰,李永鹏,等.侧孢芽孢杆菌降解有机磷能力的研究[J]. 黑龙江八一农垦大学学报, 2006, 18(1):12-14. [85] 贾雯, 黄翔鹄, 李长玲, 等. 侧孢短芽孢杆菌溶藻活性代谢产物对虾池颤藻的溶藻效果[J]. 水产学报, 2013, 37(3):465-472. [86] Jia W, Huang X, Li C. A preliminary study of the algicidal mechanism of bioactive metabolites of Brevibacillus laterosporus on Oscillatoria in prawn ponds[J]. The Scientific World Journal, 2014, 869149. [87] 王琼, 瞿建宏, 张骞月, 等. 侧孢芽孢杆菌的抑藻效应及对养殖水体中蓝藻水华的生态防控. 生物灾害科学, 2013, 36(1):61-65. [88] Kuznetsova N I, Azizbekyan R R, Konyukhov I V, et al. Inhibition of photosynthesis in cyanobacteria and plankton algae by the bacterium Brevibacillus laterosporus metabolites[J]. Doklady Biochemistry and Biophysics, 2008, 421:181-184. |
[1] | WANG Jie, ZHANG Chen, ZHU Zhengyang, LIU Junxiu, WANG Su, XU Qingxuan, DI Ning. Control Effects of Orius sauteri on Frankliniella occidentalis in Pepper and Eggplant Flowers in Greenhouses [J]. Chinese Journal of Biological Control, 2023, 39(2): 264-270. |
[2] | FU Yanyan, ZHANG Jie, ZHU Wenqian, XIA Mingcong, SUN Runhong, XU Wen, LANG Jianfeng, PAN Yamei, WU Chao, YANG Lirong, WU Yanbing, LI Dongmei. Identification and Mechanism of Strain YB-1503 for Biological Control of Meloidogyne incognita [J]. Chinese Journal of Biological Control, 2023, 39(2): 429-437. |
[3] | NONG Xiangqun, WANG Guangjun, WANG Yiyan, ZHANG LEI, GAO Qionghua, YU Yonghao. Potential and Prospect of Beauveria bassiana and Metarhizium anisopliae as Biological Pesticides for the Control of Red Fire Ants [J]. Chinese Journal of Biological Control, 2023, 39(2): 453-461. |
[4] | CHEN Weiwei, LI Zicheng, WANG Yuan, NI Meihong, AO Yan, WANG Ying, JIANG Mingxing. Parasitism of the Cotton Mealybug Phenacoccus solenopsis Tinsley by Parasitoid Wasp Aenasius arizonensis (Girault) on Hibiscus mutabilis L. plants [J]. Chinese Journal of Biological Control, 2023, 39(1): 10-17. |
[5] | ZHANG Shichang, ZHANG Yulu, TAN Xiaodong, GUO Rongjun, LI Shidong, LUO Ming. Screening of Antagonistic Streptomyces 26B and Its Efficacy on the control of Soft Rot Disease of Chinese Cabbage in Soil with Different Water Content [J]. Chinese Journal of Biological Control, 2023, 39(1): 157-166. |
[6] | LI Mengwei, CHEN Xiaoxia, BU Huanhuan, LIAO Libin, LI Jingyi, ZHANG Nannan, SHI Fusun. Isolation, Identification and Biocontrol Potential of Antagonistic Fungi against Zanthoxylum bungeanum Root Rot [J]. Chinese Journal of Biological Control, 2023, 39(1): 176-183. |
[7] | LIU Jiaojiao, YAN Zhewei, ZHANG Yiju, FU Min, ZHANG Lixin. Screening and Identification of Bacillus safensis ZG6 and Its Biocontrol Potential against Gray Blight on Camellia sinensis [J]. Chinese Journal of Biological Control, 2023, 39(1): 212-220. |
[8] | CHU Jin, YAN Han, HAN Tao, XU Han, YANG Hao, MIAO Jiankun, BAI Yuanjun, DONG Hai, LI Zhiqiang. Control Effect of Biogas Slurry on Rice Blast and Screening, Identification of Endophytic Antagonistic Bacteria [J]. Chinese Journal of Biological Control, 2022, 38(6): 1516-1525. |
[9] | HOU Xiangyu, WU Hanxiang, ZHANG Jie, HUANG Peng, YAO Jinai, YU Deyi. Identification and Control Effect of Antagonistic Streptomyces SM 3-7 against Maize Stalk Rot Disease [J]. Chinese Journal of Biological Control, 2022, 38(6): 1526-1533. |
[10] | WANG Di, GAO Yan, WU Xiaoshuang, ZHANG Wei, SHU Jinping, ZHANG Yabo, ZHAI Fengyan. Identification of Two Strains of Bacillus velezensis Isolated from Carya illinoensis Leaf and Their Antagonistic Effects on Pecan Black Spot Pathogen [J]. Chinese Journal of Biological Control, 2022, 38(6): 1572-1581. |
[11] | WEI Jingyu, HAN Yutong, ZHAI Wenxu, WEI Yong, LI Baotong, LIU Huiqin. Screening, Identification and Biocontrol Characteristics of Antagonistic Bacteria against Cucumber Soil-borne Diseases [J]. Chinese Journal of Biological Control, 2022, 38(6): 1582-1591. |
[12] | XIAO Zhipeng, LI Lingling, MU Tingting, SHAN Xuehua, LU Feng, TANG Qianjun, LIU Tianbo. Identification and Biocontrol Effect of Bacillus amyloliquefaciens YW-2-6 against Alternaria alternata [J]. Chinese Journal of Biological Control, 2022, 38(6): 1598-1607. |
[13] | ZHANG Qian, YUAN Xinyu, GUO Xin, SHAO Jiazhu, LIAO Xinlin, SONG Zhen, WANG Jiaqi, JIANG Donghua. Study on the Antibacterial Action and Control Effect of Streptomyces Sa-21 against Phytophthora nicotianae [J]. Chinese Journal of Biological Control, 2022, 38(6): 1608-1618. |
[14] | TANG Yongyu, ZHAO Hang, ZHANG Man, LIANG Chen, XING Kongzheng, WU Guoxing, GAO Xi. Suitable Stage and Conditions for Low Temperature Storage of Eocanthecona furcellata [J]. Chinese Journal of Biological Control, 2022, 38(5): 1345-1353. |
[15] | SI Fangjie, REN Jinyao, HUANG Taoxiang, YU Yiyang, GUO Jianhua, JIANG Chunhao. The Function of Bacillus velezensis 5YN8 Biofilm in Controlling of Botrytis cinerea in Tomato [J]. Chinese Journal of Biological Control, 2022, 38(5): 1223-1230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||