[1] Bernard A, Lheureux F, Dirlewanger E. Walnut: past and future of genetic improvement[J]. Tree Genetics & Genomes, 2018, 14(1): 1. [2] 王兴红, 王然, 法蕾, 等. 陕西省核桃炭疽病病原鉴定[J]. 东北林业大学学报, 2019, 47(11): 113-119. [3] Catanzaro E, Greco G, Potenza L, et al. Natural products to fight cancer: a focus on Juglans regia[J]. Toxins, 2018, 10(11): 469. [4] Cittadini M C, Martín D, Gallo S, et al. Evaluation of hazelnut and walnut oil chemical traits from conventional cultivars and native genetic resources in a non-traditional crop environment from Argentina[J]. European Food Research and Technology, 2020, 246: 833-843. [5] https: //www.fao.org/faostat [6] Xu X L, Wang F H, Liu C, et al. Morphology and phylogeny of ascomycetes associated with walnut trees (Juglans regia) in sichuan province, China[J]. Frontiers in Microbiology, 2022, 13: 1016548. [7] Da Lio D, Cobo-diaz J F, Masson C, et al. Combined metabarcoding and multi-locus approach for genetic characterization of Colletotrichum species associated with common walnut (Juglans regia) anthracnose in France[J]. Scientific Reports, 2018, 8(1): 10765. [8] Li F, Chen J, Chen Q, et al. Identification, pathogenicity, and sensitivity to fungicide of colletotrichum species that causes walnut anthracnose in beijing[J]. Agronomy Basel, 2023, 13(1): 214. [9] Zhang L, Zhao L, Liang C, et al. Colletotrichum species (glomerellales, glomerellaceae) causing walnut anthracnose in China[J]. Mycokeys, 2024, 108:95-113. [10] 陈茜, 覃伟, 代华. 核桃炭疽病研究进展[J]. 四川林勘设计, 2015(2): 52-55. [11] Wang Q H, Fan K, Li D W, et al. Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides ss responsible for walnut anthracnose disease in China[J]. Plant Disease, 2020, 104(5): 1358-1368. [12] 范昆, 付丽, 金岩, 等. 山东省核桃炭疽病发生规律及危害情况调查[J]. 中国果树, 2021(6): 86-88, 110. [13] Feng X, Xu R, Zhao N, et al. Isolation, identification, and characterization of endophytic Bacillus from walnut (Juglans sigillata) root and its biocontrol effects on walnut anthracnose[J]. Agriculture, 2022, 12(12): 2102. [14] Reimann S, Deising H. Fungicides: risks of resistance development and search for new targets[J]. Archives of Phytopathology and Plant Protection, 2000, 33(4): 329-349. [15] Xu X, Lin T, Yuan S, et al. Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation-inhibitor fungicides, prochloraz and tebuconazole[J]. Australasian Plant Pathology, 2014, 43: 605-613. [16] 吴小美, 王海霞, 云英子, 等. 植物病原真菌对杀菌剂抗性的研究进展[J]. 植物保护, 2023, 49(5): 243-259. [17] 姚锦爱, 黄鹏, 赖宝春, 等. 贝莱斯芽胞杆菌ZZBV-3的鉴定及其对草莓根腐病的防效[J]. 中国生物防治学报, 2021, 37(1): 172-177. [18] 陈泽斌, 靳松, 张永福, 等. 植物内生菌生物防治研究进展及存在的问题[J]. 昆明学院学报, 2014, 36(3): 40-42, 47. [19] 王清海, 牛赡光, 刘幸红, 等. 核桃炭疽病高效生防菌株鉴定及抑菌活性[J]. 山东农业大学学报(自然科学版), 2011, 42(3): 335-337. [20] 刘幸红, 牛瞻光, 段春华, 等. 坚强芽孢杆菌Bf-02对核桃炭疽病的防治效果[J]. 经济林研究, 2012, 30(4): 126-133. [21] Feng X, Xu R, Zhao N, et al. Isolation, identification, and characterization of endophytic Bacillus from walnut (Juglans sigillata) root and its biocontrol effects on walnut anthracnose[J]. Agriculture, 2022, 12(12): 12122102. [22] 原甜甜, 李宗阳, 陈佳佳, 等. 核桃炭疽病新型生防木霉的筛选及生物学特性研究[J]. 林产工业, 2023, 60(06): 57-63. [23] 崔林, 孙振, 袁军, 等. 马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定[J]. 植物病理学报, 2003(4): 353-358. [24] 高婧, 梁志宏. 氧脂素对赭曲霉在大豆培养基质中合成赭曲霉毒素A的影响[J]. 微生物学通报, 2020, 47(6): 1721-1729. [25] 王迪, 高岩, 吴小双, 等. 两株贝莱斯芽胞杆菌鉴定及其对薄壳山核桃黑斑病病原菌的拮抗效果[J]. 中国生物防治学报, 2022, 38(6): 1572-1581. [26] 肖志鹏, 李玲玲, 母婷婷, 等. 烟草赤星病菌拮抗菌解淀粉芽胞杆菌YW-2-6鉴定及生防效果[J]. 中国生物防治学报, 2022, 38(6): 1598-1607. [27] 唐白露, 刘佳, 王荣华, 等. 环洞庭湖四个淡水湖渔场底泥产几丁质酶细菌的筛选鉴定、分布和产酶量研究[J]. 微生物学杂志, 2023, 43(2): 58-67. [28] 华宝玉, 林娟, 严芬, 等. 产果胶酶菌株的筛选鉴定及其产酶条件的研究[J]. 福州大学学报(自然科学版), 2012, 40(3): 412-417. [29] 杨艳红, 张浩铂, 姚心怡, 等. 高产纤维素酶芽孢杆菌的筛选、鉴定与发酵条件优化[J]. 天然产物研究与开发, 2023, 35(2): 221-230. [30] Cantwell B, Mcconnell D. Molecular cloning and expression of a Bacillus subtilis β-glucanase gene in Escherichia coli[J]. Gene, 1983, 23(2): 211-219. [31] 卢超, 陈景鲜, 王国霞, 等. 一株高产中性蛋白酶菌株的筛选与诱变[J]. 中国饲料, 2022(11): 30-35. [32] Sobolev V S, Orner V A, Arias R S. Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions[J]. Plant and Soil, 2013, 371(1-2): 367-376. [33] 杨胜清, 张帆, 马贵龙. 贝莱斯芽孢杆菌S6拮抗物质分离纯化及抑菌机理[J]. 农药, 2017, 56(9): 645-648, 660. [34] Li Y, Feng X, Wang X, et al. Inhibitory effects of Bacillus licheniformis BL06 on Phytophthora capsici in pepper by multiple modes of action[J]. Biological Control, 2020, 144: 104210. [35] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [36] Kim M J, Shim C K, Park J H. Control efficacy of Bacillus velezensis AFB2-2 against potato late blight caused by phytophthora infestans in organic potato cultivation[J]. Plant Pathology Journal, 2021, 37(6): 580-595. [37] Liu Y, Yao S, Deng L, et al. Different mechanisms of action of isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum on citrus fruit[J]. Postharvest Biology and Technology, 2019, 152: 100-110. [38] 李小杰, 邱睿, 刘畅, 等. 基于全基因组测序的贝莱斯芽胞杆菌Ba-0321抑菌机制分析及相关功能验证[J]. 中国生物防治学报, 2023, 39(4): 885-894. [39] Farzand A, Moosa A, Zubair M, et al. Marker assisted detection and lc-ms analysis of antimicrobial compounds in different Bacillus strains and their antifungal effect on Sclerotinia sclerotiorum[J]. Biological Control, 2019, 133: 91-102. [40] Tsuge K, Ano T, Hirai M, et al. The genes degq, pps, and lpa-8(sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(9): 2183-2192. [41] Liu Z Z, Budiharjo A, Wang P F, et al. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42[J]. Applied Microbiology and Biotechnology, 2013, 97(23): 10081-10090. [42] Tsai I, Maharachchikumbura S S N, Hyde K D, et al. Molecular phylogeny, morphology and pathogenicity of Pseudopestalotiopsis species on ixora in Taiwan[J]. Mycological Progress, 2018, 17(8): 941-952. [43] 项佳胤, 商桑, 田丽波. 贝莱斯芽孢杆菌N46对苦瓜白粉病的防治机理研究[J]. 热带作物学报, 2024, 45(6): 1292-1302. [44] 高英, 谢永丽, 陈兰, 等. 芽孢杆菌WL911促低温下小麦生长效应及其功能基因分析[J].微生物学通报, 2024, 51(1): 1-18. [45] Gow N A, Hube B. Importance of the Candida albicans cell wall during commensalism and infection[J]. Current Opinion in Microbiology, 2012, 15(4): 406-412. [46] Venkataramanamma K, Reddy B V B, Jayalakshmi R S, et al. Isolation, in vitro evaluation of Bacillus spp. against Fusarium oxysporum f. sp. ciceris and their growth promotion activity[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 123. [47] Sharma A, Kaushik N, Sharma A, et al. Screening of tomato seed bacterial endophytes for antifungal activity reveals lipopeptide producing Bacillus siamensis strain NKIT9 as a potential bio-control agent[J]. Frontiers in Microbiology, 2021, 12: 609482. [48] Chen L, Shi H, Heng J, et al. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiological Research, 2019, 218: 41-48. [49] Yan F, Li C, Ye X, et al. Antifungal activity of lipopeptides from Bacillus amyloliquefaciens MG3 against Colletotrichum gloeosporioidesin loquat fruits[J]. Biological Control, 2020, 146: 104281. [50] Zhang D, Yu S Q, Yang Y Q, et al. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solaniin potato[J]. Frontiers in Microbiology, 2020, 11: 1196. |