中国生物防治学报 ›› 2025, Vol. 41 ›› Issue (5): 1263-1275.DOI: 10.16409/j.cnki.2095-039x.2025.02.059
• 专题综述 • 上一篇
陈飞飞1, 徐诗怡1, 孔佳慧1, 闵子权1, 王亚会2, 潘月敏1
收稿日期:2024-11-29
发布日期:2025-10-22
作者简介:陈飞飞,博士,讲师,E-mail:ffchen1951@163.com;通信作者:潘月敏,博士,教授,E-mail:ympan2008@163.com
基金资助:CHEN Feifei1, XU Shiyi1, KONG Jiahui1, MIN Ziquan1, WANG Yahui2, PAN Yuemin1
Received:2024-11-29
Published:2025-10-22
摘要: 植物有益微生物具有抑制病原菌或提高植物抗病能力、促进植物生长、增强植物抗逆性等功能。当前植物有益微生物已成为生物防治领域中的研究热点,并取得了长足的发展和进步。为了更好地了解并应用植物有益微生物,本文将结合近年来国内外植物有益微生物的研究现状,综述植物有益微生物的种类、有益于植物的功能、与植物的互作关系以及在生物防治中的作用机制,并提出利用植物有益微生物进行生物防治的思考和展望。这将有助于全面了解植物有益微生物在植物病害生物防治中的作用,为植物有益微生物的开发利用提供新的策略。
中图分类号:
陈飞飞, 徐诗怡, 孔佳慧, 闵子权, 王亚会, 潘月敏. 植物有益微生物及其在病害中的生防机制研究进展[J]. 中国生物防治学报, 2025, 41(5): 1263-1275.
CHEN Feifei, XU Shiyi, KONG Jiahui, MIN Ziquan, WANG Yahui, PAN Yuemin. Review of Plant Beneficial Microorganisms and Their Biocontrol Mechanism in Controlling Plant Disease[J]. Chinese Journal of Biological Control, 2025, 41(5): 1263-1275.
| [1] He D C, Burdon J J, Xie L H, et al. Triple bottom-line consideration of sustainable plant disease management: From economic, sociological and ecological perspectives[J]. Journal of Integrative Agriculture, 2021, 20(10): 2581-2591. [2] 康振生. 聚焦小麦赤霉病,助力国家粮食安全[J]. 生物技术进展, 2021, 11(5): 553. [3] Mishra S, Srivastava S, Dewangan J, et al. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(8): 1346-1374. [4] Chakraborty S, Newton A C. Climate change, plant diseases and food security: an overview[J]. Plant Pathology, 2011, 60(1): 2-14. [5] Gould F, Brown Z S, Kuzma J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance?[J]. Science, 2018, 360(6390): 728-732. [6] Gunstone T, Cornelisse T, Klein K, et al. Pesticides and soil invertebrates: A hazard assessment[J]. Frontiers in Environmental Science, 2021, 9(3): 161-176. [7] Li C J, Zhu H M, Li C Y, et al. The present situation of pesticide residues in China and their removal and transformation during food processing[J]. Food Chemistry, 2021, 354: 129552. [8] Pandit M A, Kumar J, Gulati S, et al. Major biological control strategies for plant pathogens[J]. Pathogens, 2022, 11(2): 237. [9] Niu J Z, Hull-Sanders H, Zhang Y X, et al. Biological control of arthropod pests in citrus orchards in China[J]. Biological Control, 2014, 68: 15-22. [10] Migunova V D, Sasanelli N. Bacteria as biocontrol tool against phytoparasitic nematodes[J]. Plants-Basel, 2021, 10(2): 389. [11] Karthika S, Varghese S, Jisha M S. Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases[J]. 3 Biotech, 2020, 10(7): 320. [12] Diaz-Siefer P, Olmos-Moya N, Fonturbel F E, et al. Bird-mediated effects of pest control services on crop productivity: a global synthesis[J]. Journal of Pest Science, 2022, 95(2): 567-576. [13] Rizvi S A H, George J, Reddy G V P, et al. Latest developments in insect sex pheromone research and its application in agricultural pest management[J]. Insects, 2021, 12(6): 484. [14] 袁善奎, 王以燕, 师丽红, 等. 我国生物源农药标准制定现状及展望[J]. 中国生物防治学报, 2018, 34(1): 1-7. [15] 崔佳佳, 张雪洪. 微生物源农用抗生素的研发与高产策略[J]. 生物工程学报, 2021, 37(3): 1032-1041. [16] 刘艳潇, 祝一鸣, 周而勋. 植物免疫诱抗剂的作用机理和应用研究进展[J]. 分子植物育种, 2020, 18(3): 1020-1026. [17] Rodriguez P A, Rothballer M, Chowdhury S P, et al. Systems biology of plant-microbiome interactions[J]. Molecular Plant, 2019, 12(6): 804-821. [18] Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. [19] Yu Y Y, Gui Y, Li Z J, et al. Induced systemic resistance for improving plant immunity by beneficial microbes[J]. Plants-Basel, 2022, 11(3): 386. [20] Ku Y S, Liao Y J, Chiou S P, et al. From trade-off to synergy: microbial insights into enhancing plant growth and immunity[J]. Plant Biotechnology Journal, 2024, 22(9): 2461-2471. [21] Mandal S D, Jeon J. Phyllosphere microbiome in plant health and disease[J]. Plants-Basel, 2023, 12(19): 3481. [22] 潘建刚, 呼庆, 齐鸿雁, 等. 叶际微生物研究进展[J]. 生态学报, 2011, 31(2): 583-592. [23] 陈招荣, 刘新悦, 赵欣迪, 等. 植物内生菌群落组成及其功能研究进展[J]. 生命科学, 2023, 35(2): 132-139. [24] Petrini O. Fungal endophytes of tree leaves[C]// Andrews J H, Hirano S S. Microbial Ecology of Leaves. New York, US: Springer New York, NY, 1991, 179-197. [25] Kharwar R N, Mishra A, Gond S K, et al. Anticancer compounds derived from fungal endophytes: their importance and future challenges[J]. Natural Product Reports, 2011, 28(7): 1208-1228. [26] McKinney. Mosaic diseases in the Canary Islands, West Africa and Gibraltar[J]. Journal of Agricultural Research, 1929, 39: 577-578. [27] 张瑞福. 根际微生物:农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. [28] Kloepper J W, Schroth M N. Plant growth promoting rhizobacteria on radishes[C]//Proceedings of the 4th international conference on plant pathogenic bacteria II, Station de Pathologie Vegetale et Phytobacteriologie. Angers, France: INRA, 1978: 879-882. [29] Latef A, Abu Alhmad M F, Kordrostami M, et al. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions[J]. Journal of Plant Growth Regulation, 2020, 39(3): 1293-1306. [30] Wang H T, Wu C F, Zhang H Q, et al. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease[J]. World Journal of Microbiology & Biotechnology, 2022, 38(9): 155. [31] Harley J L. The significance of mycorrhiza[J]. Mycological Research, 1989, 92(2): 129-139. [32] Ivanov S, Austin J, Berg R H, et al. Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface[J]. Nature Plants, 2019, 5(2): 194-203. [33] 聂建华, 张理航, 张明明, 等. 真菌病毒减弱寄主致病性机理及其生防应用[J]. 中国生物防治学报, 2022, 38(4): 951-958. [34] Ge H J, Fu S S, Guo H M, et al. Application and challenge of bacteriophage in the food protection[J]. International Journal of Food Microbiology, 2022, 380: 109872. [35] Strathdee S A, Hatfull G F, Mutalik V K, et al. Phage therapy: From biological mechanisms to future directions[J]. Cell, 2023, 186(1): 17-31. [36] Hsueh Y P, Mahanti P, Schroeder F C, et al. Nematode-trapping fungi eavesdrop on nematode pheromones[J]. Current Biology, 2013, 23(1): 83-86. [37] Boukaew S, Cheirsilp B, Yossan S, et al. Utilization of palm oil mill effluent as a novel substrate for the production of antifungal compounds by Streptomyces philanthi RM-1-138 and evaluation of its efficacy in suppression of three strains of oil palm pathogen[J]. Journal of Applied Microbiology, 2022, 132(3): 1990-2003. [38] Zhang H Z, Zhang C H, Xiang X L, et al. Uptake and transport of antibiotic kasugamycin in castor bean (Ricinus communis L.) seedlings[J]. Frontiers in Microbiology, 2022, 13: 948171. [39] Li Z J, Tang S Y, Gao H S, et al. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis[J]. Plant Cell and Environment, 2024, 47(1): 337-353. [40] Olaniyan F T, Alori E T, Adekiya A O, et al. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics[J]. Annals of Microbiology, 2022, 72(1): 45. [41] Soumare A, Diedhiou A G, Thuita M, et al. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture[J]. Plants-Basel, 2020, 9(8): 1011. [42] 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用[J]. 应用生态学报, 2020, 31(9): 2923-2934. [43] Ma Y, Prasad M N V, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2): 248-258. [44] Afzal I, Shinwari Z K, Sikandar S, et al. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants[J]. Microbiological Research, 2019, 221: 36-49. [45] 刘婉慧, 陈飞飞, 叶建仁, 等. 吡咯伯克霍尔德氏菌JK-SH007吲哚-3-乙酰胺IAA合成功能及其依赖途径鉴定[J]. 林业科学, 2019, 55(9): 121-129. [46] 马莹, 曹梦圆, 石孝均, 等. 植物促生菌的功能及在可持续农业中的应用[J]. 土壤学报, 2023, 60(6): 1555-1568. [47] Bernabeu P R, Pistorio M, Torres-Tejerizo G, et al. Colonization and plant growth-promotion of tomato by Burkholderia tropica[J]. Scientia Horticulturae, 2015, 191: 113-120. [48] El-Hadad M E, Mustafa M I, Selim S M, et al. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil[J]. Brazilian Journal of Microbiology, 2011, 42(1): 105-113. [49] Sattar A, Naveed M, Ali M, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: A review[J]. Applied Soil Ecology, 2019, 133: 146-159. [50] Singh T B, Sahai V, Goyal D, et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture[J]. Current Microbiology, 2020, 77(11): 3633-3642. [51] Verbon E H, Liberman L M. Beneficial microbes affect endogenous mechanisms controlling root development[J]. Trends in Plant Science, 2016, 21(3): 218-229. [52] 范美玉, 黎妮, 贾雨田, 等. 耐镉阿氏芽孢杆菌缓解水稻受镉胁迫的研究[J]. 农业环境科学学报, 2021, 40(2): 279-286. [53] 王亚军, 冯炬威, 李雅倩, 等. 高产铁载体菌Burkholderia vietnamiensis YQ9促生特性研究及其对重金属胁迫条件下种子萌发的影响[J]. 环境科学学报, 2022, 42(2): 430-437. [54] Eljounaidi K, Lee S K, Bae H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases - review and future prospects[J]. Biological Control, 2016, 103: 62-68. [55] Liu Y P, Xu Z H, Chen L, et al. Root colonization by beneficial rhizobacteria[J]. Fems Microbiology Reviews, 2024, 48(1): fuad066. [56] Janisiewicz W J, Tworkoski T J, Sharer C. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients[J]. Phytopathology, 2000, 90(11): 1196-1200. [57] Shen N K, Li S Y, Li S Y, et al. The siderophore-producing bacterium, Bacillus siamensis Gxun-6, has an antifungal activity against Fusarium oxysporum and promotes the growth of banana[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 34. [58] Spence C, Alff E, Johnson C, et al. Natural rice rhizospheric microbes suppress rice blast infections[J]. Bmc Plant Biology, 2014, 14: 130. [59] 林福呈, 李德葆. 枯草芽孢杆菌( Bacillus subtilis) S9对植物病原真菌的溶菌作用[J]. 植物病理学报, 2003(2): 174-177. [60] R W. Trichoderma lignorumas a parasite of other soil fungi[J]. Phytopathology, 1932(22): 837-845. [61] Zhang H X, Xie J T, Fu Y P, et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement[J]. Molecular Plant, 2020, 13(10): 1420-1433. [62] 黄显德, 王玉, 闫志勇, 等. 番木瓜环斑病毒西瓜株系弱毒突变体的筛选与应用[J]. 植物保护学报, 2019, 46(4): 738-744. [63] Huang C J, Liu Y H, Yang K H, et al. Physiological response of Bacillus cereus C1L-induced systemic resistance in lily against Botrytis leaf blight[J]. European Journal of Plant Pathology, 2012, 134(1): 1-12. [64] Torres-Rodriguez J A, Reyes-Perez J J, Quinones-Aguilar E E, et al. Actinomycete potential as biocontrol agent of phytopathogenic fungi: Mechanisms, source, and applications[J]. Plants-Basel, 2022, 11(23): 3201. [65] Carrión V J, Perez-Jaramillo J, Cordovez V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606-612. [66] Wonglom P, Ito S, Sunpapao A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa)[J]. Fungal Ecology, 2020, 43: 100867. [67] 程笑笑, 冯自力, 冯鸿杰, 等. 真菌源几丁质酶在植物抗真菌病害中的应用[J]. 植物保护, 2017, 43(3): 29-35. [68] Zhang L L, Bao L L, Li S Y, et al. Substances derived from myxobacteria that prevent and control plant pathogenic diseases and their prevention and control principles[J]. Frontiers in Microbiology, 2024, 14: 1294854. [69] Perrot T, Pauly M, Ramírez V. Emerging roles of β-glucanases in plant development and adaptative responses[J]. Plants-Basel, 2022, 11(9): 1119. [70] Fira D, Dimkic I, Beric T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55. [71] Cochrane S A, Vederas J C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates[J]. Medicinal Research Reviews, 2016, 36(1): 4-31. [72] Park E J, Jang H J, Park J Y, et al. Efficacy evaluation of Streptomyces nigrescens KA-1 against the root-knot nematode Meloidogyne incognita[J]. Biological Control, 2023, 179: 105150. [73] Dimopoulou A, Theologidis I, Benaki D, et al. Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBi600[J]. Msphere, 2021, 6(4): e00376-00321. [74] Phoka N, Suwannarach N, Lumyong S, et al. Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana[J]. Journal of Fungi, 2020, 6(4): 341. [75] Lin L, Shao X L, Yang Y C, et al. Lysobacter enzymogenes: A fully armed biocontrol warrior[J]. Journal of Integrative Agriculture, 2025, 24(1): 23-35. [76] Lin L, Shen D Y, Shao X L, et al. Soil microbiome bacteria protect plants against filamentous fungal infections via intercellular contacts[J]. Proceedings of The National Academy of Sciences of The United States of America, 2025, 122(3): e2418766122. [77] 许沛冬, 易剑锋, 陈迪, 等. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. [78] Sehrawat A, Sindhu S S, Glick B R. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture[J]. Pedosphere, 2022, 32(1): 15-38. [79] Kremer R J, Souissi T. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth[J]. Current Microbiology, 2001, 43: 182-186. [80] Li Y Q, Zhou X L, Zhang X J, et al. A myxobacterial GH19 lysozyme with bacteriolytic activity on both gram-positive and negative phytopathogens[J]. Amb Express, 2022, 12(1): 54. [81] Druzhinina I S, Seidl-Seiboth V, Herrera-Estrella A, et al. Trichoderma: the genomics of opportunistic success[J]. Nature Reviews Microbiology, 2011, 9(12): 749-759. [82] Weindling R. Trichoderma lignorumas a parasite of other soil fungi[J]. Phytopathology, 1932, 22: 837-845. [83] Barnett H L, Binder F L. The fungal host-parasite relationship[J]. Annual Review of Phytopathology, 1973, 11(1): 273-292. [84] 李利. 白粉菌重寄生真菌的分离鉴定及生物学特性研究[D]. 杨凌: 西北农林科技大学, 2016. [85] Chen Y Y, Chen P C, Tsay T T. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici[J]. Biological Control, 2016, 98: 34-42. [86] Wu J N, Xin R L, Jiang Y C, et al. Botrytis cinerea type II inhibitor of apoptosis BcBIR1 enhances the biocontrol capacity of Coniothyrium minitans[J]. Microbial Biotechnology, 2024, 17(2): e14402. [87] Wang Y, Yu H, Xu Y, et al. Expression of a mycoparasite protease in plant petals suppresses the petal-mediated infection by necrotrophic pathogens[J]. Cell Reports, 2023, 42(11): 113290. [88] Casadevall A, Pirofski L A. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity[J]. Infection and immunity, 1999, 67(8): 3703-3713. [89] Hillman B I, Suzuki N. Viruses of the chestnut blight fungus, Cryphonectria parasitica [M]. Advances in Virus Research. Academic Press. 2004: 423-472. [90] Rajesha G, Nakkeeran S, Hubballi M, et al. Endophytic bacterial biocontrol agents degrade a putative toxin of Alternaria macrospora responsible for the severity of cotton leaf blight[J]. Journal of Plant Pathology, 2021, 103(4): 1283-1293. [91] Shen M, Xia D, Yin Z F, et al. Bacillus pumilus WP8 exhibits biocontrol efficacy against tomato bacterial wilt via attenuation of the virulence of the pathogenic bacterium[J]. ACTA Agriculturae Scandinavica Section B-Soil and Plant Science, 2018, 68(5): 379-387. [92] Zhu X X, Chen W J, Bhatt K, et al. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review[J]. Frontiers in Plant Science, 2023, 13: 1063393. [93] Sason G, Yedidia I, Nussinovitch A, et al. Self-demise of soft rot bacteria by activation of microbial predators by pectin-based carriers[J]. Microbial Biotechnology, 2023, 16(7): 1561-1576. [94] Xu L, Zhang W, Liu S, et al. Transcriptome analysis of the synergistic mechanisms between two strains of potato virus Y in Solanum tuberosum L.[J]. Virology, 2024, 594: 110032. [95] Liu Y, Zhang H, Wang J, et al. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant "cry for help" response to assemble disease suppressing and growth promoting rhizomicrobiome[J]. Nature Communications, 2024, 15(1): 1907. [96] Liu X Y, Matsumoto H, Lv T X, et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease[J]. Nature Microbiology, 2023, 8(8): 1419-1433. [97] Liu H, Wang J, Sun H M, et al. Transcriptome profiles reveal the growth-promoting mechanisms of Paenibacillus polymyxa YC0136 on tobacco (Nicotiana tabacum L.)[J]. Frontiers in Microbiology, 2020, 11: 584174. [98] Castrillo G, Teixeira P, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518. [99] Garrido-Oter R, Nakano R T, Dombrowski N, et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia[J]. Cell Host & Microbe, 2018, 24(1): 155-167. [100] Yi J C, Zhang D J, Cheng Y J, et al. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt[J]. Applied Microbiology and Biotechnology, 2019, 103: 9643-9657. [101] Abedon S T. Ecology of anti-biofilm agents II: Bacteriophage exploitation and biocontrol of biofilm bacteria[J]. Pharmaceuticals (Basel, Switzerland), 2015, 8(3): 559-589. [102] Vasic T, Andjelkovic S, Radovic J, et al. Alfalfa inoculation: the effect on root growth and number of rhizospheric microorganisms[J]. Romanian Biotechnological Letters, 2014, 19(4): 9457-9464. [103] Huang X Q, Zhang N, Yong X Y, et al. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43[J]. Microbiological Research, 2012, 167(3): 135-143. [104] Ballaré C L, Austin A T. Recalculating growth and defense strategies under competition: key roles of photoreceptors and jasmonates[J]. Journal of Experimental Botany, 2019, 70(13): 3425-3434. [105] 李法喜, 段廷玉. AM真菌和其他4类有益微生物联合防治植物病害研究进展[J]. 中国草地学报, 2021, 43(8): 93-105. [106] Neeraj, Singh K. Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L.[J]. European Journal of Soil Biology, 2011, 47(5): 288-295. [107] Singh P, Singh R K, Guo D J, et al. Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa b18-a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum[J]. Frontiers in Microbiology, 2021, 12: 628376. [108] Tahir H A S, Gu Q, Wu H J, et al. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt[J]. Scientific Reports, 2017, 7: 40481. [109] Eida A A, Bougouffa S, L'Haridon F, et al. Genome insights of the plant-growth promoting bacterium Cronobacter muytjensii JZ38 with volatile-mediated antagonistic activity against Phytophthora infestans[J]. Frontiers in Microbiology, 2020, 11: 369. [110] Tian B, Xie J, Fu Y, et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases[J]. The ISME Journal, 2020, 14(12): 3120-3135. [111] Yu X, Li B, Fu Y P, et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus[J]. Proceedings of The National Academy of Sciences of the United States of America, 2010, 107(18): 8387-8392. |
| [1] | 李翰扬, 党英侨, 曹亮明, 王小艺. 美国白蛾在特拉华州的取食偏好性及天敌招引试验初报[J]. 中国生物防治学报, 2025, 41(5): 998-1007. |
| [2] | 王志远, 金梦军, 冯中红, 杨成德, 施玉安. 防治玉米茎腐病的枯草芽胞杆菌262XY2′颗粒剂的研制[J]. 中国生物防治学报, 2025, 41(5): 1133-1140. |
| [3] | 白真旭, 计天岑, 陈路生, 张炜康, 曹雨蓉, 朱彩华, 丁楚, 陈勇, 陆铭昌, 王文利, 陈捷. 木霉活性素复合制剂在水稻病虫害绿色防控中的应用[J]. 中国生物防治学报, 2025, 41(5): 1166-1178. |
| [4] | 尹顺利, 毛俊, 王洁琳, 冯臣成, 丁月, 苏源, 白亭亭. 香蕉枯萎病生防真菌的筛选鉴定及其防治效果评价[J]. 中国生物防治学报, 2025, 41(5): 1188-1199. |
| [5] | 韩舜达, 陈俊杰, 陈万斌, 张茂森, 张礼生. 草原毛虫的生物防治资源和应用现状[J]. 中国生物防治学报, 2025, 41(5): 1256-1262. |
| [6] | 宋柳筱, 徐维红, 许静杨, 从玉秋, 贲海燕, 李冰, 吴惠惠, 邹德玉. 蠋蝽昆虫源人工饲料的优化与评价[J]. 中国生物防治学报, 2025, 41(4): 769-779. |
| [7] | 徐文, 谢夏, 李盼, 董迁迁, 孙润红, 张洁, 夏明聪, 武超, 杨丽荣. 贝莱斯芽胞杆菌YB-1465生防特性分析及对小麦茎基腐病的生防作用[J]. 中国生物防治学报, 2025, 41(4): 877-886. |
| [8] | 吴梦菁, 黄鹏, 张杰, 郑璐平, 余德亿, 林胜, 吴祖建, 姚锦爱. 贝莱斯芽孢杆菌BV-3的鉴定及其对玉米小斑病的防效[J]. 中国生物防治学报, 2025, 41(4): 887-894. |
| [9] | 张驰, 金秉锟, 栗静雯, 都业娟, 黄家风, 张学坤, 刘政. 棉花僵铃病拮抗菌的筛选及其防治效果评价[J]. 中国生物防治学报, 2025, 41(4): 895-905. |
| [10] | 范腕腕, 王振宇, 张海燕, 崔小伟, 冯兰兰, 高蒙. 花生白绢病拮抗细菌的分离鉴定及其生防作用研究[J]. 中国生物防治学报, 2025, 41(4): 906-915. |
| [11] | 孙松, 韩慧敏, 高玉平, 刘春菊, 刘涛, 台金, 王玮玉, 王川, 范增博, 张晓阳, 韩超. 解淀粉芽胞杆菌CY3的分离鉴定、发酵条件筛选及其对烟草镰刀菌根腐病的防治效果评价[J]. 中国生物防治学报, 2025, 41(4): 916-926. |
| [12] | 郭健杰, 易晗, 唐家昊, 刘颜玉, 韦金妮, 杨咖儿, 张红岩, 申乃坤, 陈伯昌. 烟草黑胫病生防菌的筛选、鉴定及其防病促生作用[J]. 中国生物防治学报, 2025, 41(4): 927-938. |
| [13] | 易冬银, 袁善奎, 毕扬, 马春英. 油菜菌核病生防细菌ACQ-03的分离鉴定及其活性研究[J]. 中国生物防治学报, 2025, 41(4): 939-948. |
| [14] | 肖欧丽, 王佳乐, 陈捷胤, 戴小枫, 孔志强. 根及根茎类中药材根腐病生物防治研究进展[J]. 中国生物防治学报, 2025, 41(3): 511-519. |
| [15] | 沙月霞, 曾庆超, 田兴芳, 李云翔, 徐瑾瑜. 防治中药材根腐病芽胞杆菌的筛选及效果评价[J]. 中国生物防治学报, 2025, 41(3): 520-529. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 《中国生物防治学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持:support@magtech.com.cn