中国生物防治学报 ›› 2025, Vol. 41 ›› Issue (5): 1276-1292.DOI: 10.16409/j.cnki.2095-039x.2025.02.066
• 专题综述 • 上一篇
曹喜舟1, 杨洁1, 谭冠林2, 杨桂香1, 兰平秀1, 李凡1
收稿日期:2025-02-28
发布日期:2025-10-22
作者简介:曹喜舟,女,硕士研究生,E-mail:2022210335@stu.ynau.edu.cn;通信作者:李凡,博士,教授,E-mail:fanli@ynau.edu.cn
基金资助:CAO Xizhou1, YANG Jie1, TAN Guanlin2, YANG Guixiang1, LAN Pinxiu1, LI Fan1
Received:2025-02-28
Published:2025-10-22
摘要: 植物病毒病是农业生产的重要威胁。在绿色防控理念的驱动下,利用微生物资源防治植物病毒病已成为当前的研究热点。目前,功能微生物菌株、微生物源活性代谢产物及合成菌群等在抗病毒机制研究与实际应用方面均取得了显著进展。本文系统综述了具有抗病毒活性的微生物类群及活性物质的挖掘与应用现状,深入探讨了其介导的抗病毒作用机理,并分析了当前微生物资源在实际应用中面临的技术瓶颈与挑战。相关研究不仅为新型抗病毒生防制剂的靶向设计与工程化开发奠定了理论基础,也将推动植物病毒病绿色防控体系的构建与创新。
中图分类号:
曹喜舟, 杨洁, 谭冠林, 杨桂香, 兰平秀, 李凡. 微生物资源在植物病毒病防控中的应用与抗病毒机制研究进展[J]. 中国生物防治学报, 2025, 41(5): 1276-1292.
CAO Xizhou, YANG Jie, TAN Guanlin, YANG Guixiang, LAN Pinxiu, LI Fan. Advances in the Application of Microbial Resources for Plant Viral Disease Control and Their Antiviral Mechanisms[J]. Chinese Journal of Biological Control, 2025, 41(5): 1276-1292.
| [1] 周雪平, 陶小荣主编. 植物病毒学[M], 北京: 科学出版社, 2024. [2] 娄虎, 徐熔, 王海竹, 等. 植物病毒病检测及防治的研究进展[J]. 江苏农业科学, 2017, 45(24): 25-31. [3] Scholthof K B, Adkins S, Czosnek H, et al. Top 10 plant viruses in molecular plant pathology[J]. Molecular Plant Pathology, 2011, 12(9): 938-954. [4] Peng J Y, Song K L, Zhu H Y, et al. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy[J]. Scientific Reports, 2017, 7: 44551. [5] Srinivasan R, Abney M R, Culbreath A K, et al. Three decades of managing tomato spotted wilt virus in peanut in Southeastern United States[J]. Virus Research, 2017, 241: 203-212. [6] 刘剑峰, 肖启明, 张德咏, 等. 番茄黄化曲叶病(TYLCV)的研究进展[J]. 中国农学通报, 2013, 29(13): 70-76. [7] 韦建明, 黄鑫, 李云洲, 等. 番茄褐色皱纹果病毒( ToBRFV)研究进展[J]. 园艺学报, 2024, 51(2): 439-452. [8] 苏晓梅, 吕宏君, 刘淑梅, 等. 番茄褐色皱纹果病毒检测及抗性材料筛选[J]. 山东农业科学, 2025, 57(1): 130-135. [9] 石钰杰, 马子玥, 杨秀玲, 等. 警惕番茄褐色皱纹果病毒在我国的传播和危害[J]. 植物保护, 2022, 48(6): 42-48. [10] 肖雨晴, 吕高莹, 李树军, 等. 番茄褐色皱纹果病毒( ToBRFV) 云南建水分离物鉴定及全基因组序列分析[J]. 植物病理学报, 2025, 55(2): 194-202. [11] Vitti A, Monaca E, Sofo A, et al. Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by cucumber mosaic virus (CMV)[J]. Biocontrol, 2015, 60(1): 135-147. [12] Shen L L, Wang F L, Yang J G, et al. Control of tobacco mosaic virus by Pseudomonas fluorescens CZ powder in greenhouses and the field[J]. Crop Protection, 2014, 56: 87-90. [13] Xuan Z, Wang Y, Shen Y Y, et al. Bacillus velezensis HN-2: a potent antiviral agent against pepper veinal mottle virus[J]. Frontiers in Plant Science, 2024, 15: 1403202-1403218. [14] Abdelkhalek A, Al-Askar A A, Behiry I S. Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against alfalfa mosaic virus[J]. Scientific reports, 2020, 10(1): 16120-16135. [15] Hamada E, Abdulaziz A A, Lóránt K, et al. Foliar applications of Bacillus subtilis HA1 culture filtrate enhance tomato growth and induce systemic resistance against tobacco mosaic virus infection[J]. Horticulturae, 2022, 8(4): 301-321. [16] Park K, Paul D, Ryu R K, et al. Bacillus vallismortis strain EXTN-1 mediated systemic resistance against potato virus Y and X in the field[J]. The Plant Pathology Journal, 2006, 22(4): 360-363. [17] Kandan A, Ramiah M, Vasanthi J V, et al. Use of Pseudomonas fluorescens based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato[J]. Biocontrol Science and Technology, 2005, 15(6): 553-569. [18] Zaccardelli M, Campanile F, Galdo A, et al. Control of viral damages on tomato in open field, by treatments with a PGPR strain of Pseudomonas putida[J]. Acta Horticulturae, 2011, 914: 405-407. [19] 曲潇玲, 张俊英, 刘笑玮, 等. 荧光假单胞菌CZ菌株定殖及抗病毒活性研究[J]. 植物保护, 2020, 46(6): 14-21. [20] Elbadry M, Taha R, Eldougdoug K, et al. Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria[J]. Journal of Plant Diseases and Protection, 2006, 113(6): 247-251. [21] Li H W, Huang W X, Xu L, et al. Stenotrophomonas maltophilia HW2 enhanced cucumber resistance against cucumber green mottle mosaic virus[J]. Journal of Plant Biology, 2016, 59(5): 488-495. [22] Elsharkawy M M, Shimizu M, Takahashi H, et al. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against cucumber mosaic virus in cucumber plants[J]. Plant and Soil, 2012, 361: 397-409. [23] Elsharkawy M M, Shimizu M, Takahashi H, et al. Induction of systemic resistance against cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco[J]. Plant Pathology, 2012, 61(5): 964-976. [24] 许晓雯, 陈宸, 陈夕军. 生防放线菌活性代谢产物研究进展[J]. 生物灾害科学, 2023, 46(1): 86-93. [25] Li Y L, Guo Q, Li Y Z, et al. Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities[J]. Biology and Fertility of Soils, 2019, 55(2): 149-169 [26] Zaid A A G, Matar M S, Abdelkhalek A. Induction of plant resistance against tobacco mosaic virus using the biocontrol agent streptomyces cellulosae isolate Actino 48[J]. Agronomy, 2020, 10(11): 1620-1635. [27] Lee S K, Lur H S, Lo K J, et al. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3[J]. Applied Microbiology and Biotechnology, 2016, 100(18): 7977-7987. [28] Wong W T, Tseng C H, Hsu S H, et al. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input[J]. Microbes Environment, 2014, 29(3): 303-313. [29] Su P, Tan X Q, Li C G, et al. Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses[J]. Microbial Biotechnology, 2017, 10(3): 612-624. [30] 林志新, 俞吉安, 陈萍, 等. 光合细菌P4株对植物抗病毒活性的诱导作用[J]. 上海农业学报, 1992(4): 64-68. [31] 冯推紫, 谭新球, 苏品, 等. 沼泽红假单胞菌PSB06与荧光假单胞菌WCS417r、苯并噻二唑(BTH)混合使用诱导烟草对TMV的抗性[C]//中国植物保护学会. 2014年中国植物保护学会学术年会论文集, 2014, 502. [32] Lu D Y H, Yue H, Chen J B, et al. Rhodopseudomonas palustris PSB-06 induces plant defense and suppresses the transmission of tomato chlorosis virus by Bemisia tabaci MED[J]. Agronomy, 2022, 12(11): 2631-2645. [33] 刘勇, 张德咏, 王小平. 光合细菌PSB-1对辣椒病毒病的防治作用[J]. 湖南农业科学, 2000(6): 30-31. [34] Zhang S B, Luo X W, Cheng J, et al. Genome sequence of pyrethroid-degrading bacterium Rhodopseudomonas palustris strain JSC-3b[J]. Genome Announcements, 2014, 2(1): e01228-13. [35] Su P, Feng T Z, Zhou X G, et al. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b[J]. Scientific Reports, 2015, 5(1): 16121-16130. [36] 周雪平, 濮祖芹, 方中达. 含卫星RNA的黄瓜花叶病毒弱株系的分离鉴定及在病毒病防治上的应用[J]. 中国病毒学, 1994(4): 319-326. [37] Xu X J, Sun X J, Liu C J, et al. Development of an attenuated potato virus Y mutant carrying multiple mutations in helper-component protease for cross-protection[J]. Virus Research, 2024, 344: 199369-199377. [38] Liu J, Li X D, Xu S. Single amino acid substitutions in the coat protein and RNA-dependent RNA polymerase alleviated the virulence of cucumber green mottle mosaic virus and conferred cross protection against severe infection[J]. Virus Genes, 2020, 56(2): 228-235. [39] 赵梅胜. 马铃薯Y病毒和番茄褐色皱果病毒弱毒突变体筛选及交叉保护效果测定[D]. 泰安: 山东农业大学, 2021. [40] Huang X D, Fang L, Gu Q S, et al. Cross protection against the watermelon strain of papaya ringspot virus through modification of viral RNA silencing suppressor[J]. Virus Research, 2019, 265: 166-171. [41] Pechinger K, Chooi K M, MacDiarmid R M, et al. A new era for mild strain cross-protection[J]. Viruses, 2019, 11(7): 670-686. [42] Yoon J Y, Ahn H I, Kim M, et al. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper[J]. Virus Research, 2006, 118(1-2): 23-30. [43] Kurihara Y, Watanabe Y. Cross-protection in arabidopsis against crucifer tobamovirus Cg by an attenuated strain of the virus[J]. Molecular Plant Pathology, 2003, 4(4): 259-269. [44] Shih S L, Hui W W, Fuh J J, et al. Modifications of the helper component-protease of zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection[J]. Phytopathology, 2007, 97(3): 287-296. [45] 黄显德, 王玉, 闫志勇, 等. 番木瓜环斑病毒西瓜株系弱毒突变体的筛选与应用[J]. 植物保护学报, 2019, 46(4): 738-744. [46] Chamberlain E E, Atkinson J D, Hunter J A. Cross-protection between strains of apple mosaic virus[J]. New Zealand Journal of Agricultural Research, 1964, 7(4): 480-490. [47] 唐萌, 金鑫, 周彦. 柑橘衰退病毒弱毒株筛选方法研究进展[J]. 果树学报, 2015, 32(4): 707-711. [48] Slavokhotova A A, Istomina A E, Andreeva N E, et al. An attenuated strain of cucumber green mottle mosaic virus as a biological control agent against pathogenic viral strains[J]. American Journal of Plant Sciences, 2016, 7(5): 724-732. [49] 毋谷穗, 康良仪, 田波. 黄瓜花叶病毒株系间交叉保护作用与卫星RNA干扰作用的比较研究[J]. 微生物学报, 1989, 29(5): 371-377. [50] 王芳, 王凤龙, 申莉莉, 等. 拮抗黄瓜花叶病毒(CMV)细菌粗提蛋白对CMV粒体形态的影响[J]. 中国烟草学报, 2010, 16(4): 89-91. [51] 王颖, 付强, 陈雅寒, 等. 超敏蛋白BaPE1对烟草马铃薯Y病毒的诱导抗性[J]. 西北农业学报, 2017, 26(10): 1550-1553. [52] Li Y F, Jiao Y B, Shi J, et al. BLB8, an antiviral protein from Brevibacillus laterosporus strain B8, inhibits tobacco mosaic virus infection by triggering immune response in tobacco[J]. Pest Management Science, 2021, 77(10): 4383-4392. [53] Zhou W W, Niu T G. Purification and some properties of an extracellular ribonuclease with antiviral activity against tobacco mosaic virus from Bacillus cereus[J]. Biotechnology Letters, 2009, 31(1): 101-105. [54] Wang N B, Liu M J, Guo L H, et al. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco[J]. International Journal of Biological Sciences, 2016, 12(6): 757-767. [55] Wang H Q, Yang X F, Guo L H, et al. PeBL1, a novel protein elicitor from Brevibacillus laterosporus strain A60, activates defense responses and systemic resistance in Nicotiana benthamiana[J]. Applied and Environmental Microbiology, 2015, 81(8): 2706-2716. [56] Qin Y X, Wang J, Wang F L, et al. Purification and characterization of a secretory alkaline metalloprotease with highly potent antiviral activity from Serratia marcescens strain S3[J]. Journal of Agricultural and Food Chemistry, 2019, 67(11): 3168-3178. [57] Park, Yeon J, Yang, et al. Antiviral peptide from Pseudomonas chlororaphis O6 against tobacco mosaic virus (TMV)[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(1): 89-94. [58] 谢菁菁. 贝莱斯芽孢杆菌B55抗病毒活性物质分析及作用机理研究[D]. 沈阳: 沈阳农业大学, 2022. [59] 毕建华, 杨金广, 欧阳明安, 等. 黏质沙雷氏菌次生代谢物对TMV的抑制机理[J]. 中国农业科学, 2014, 47(5): 912-922. [60] 高圣风, 王锋, 刘爱勤, 等. Bacillus subtilis VD18R19脂肽类产物鉴定及其对胡椒花叶病的田间生防效果[J]. 热带农业科学, 2019, 39(10): 89-94. [61] Kang B R, Park J S, Jung W J. Antiviral activity by lecithin-induced fengycin lipopeptides as a potent key substrate against cucumber mosaic virus[J]. Microbial Pathogenesis, 2021, 155: 104910-104916. [62] 吴艳兵, 谢荔岩, 谢联辉, 等. 毛头鬼伞多糖CCP60a对TMV外壳蛋白的影响[J]. 植物资源与环境学报, 2008(3): 63-66. [63] Wang J, Wang H Y, Xia X M, et al. Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings[J]. International Journal of Biological Macromolecules, 2013, 61: 264-269. [64] 孙慧, 吴祖建, 谢联辉, 等. 杨树菇(Agrocybe aegerita)中一种抑制TMV侵染的蛋白质纯化及部分特性[J]. 生物化学与生物物理学报, 2001(3): 351-354. [65] Wu L P, Gao X L, Duan Y D, et al. Testing of antiviral characteristics of flammutoxin in transgenic tobacco[J]. Journal of Plant Diseases and Protection, 2017, 124(5): 429-435. [66] 许玉娟, 范素素, 齐文静, 等. 苍耳多糖对烟草花叶病毒的抑制作用及对烟草几种防御酶活性的影响[J]. 山东农业大学学报(自然科学版), 2010, 41(4): 485-488. [67] 付鸣佳, 吴祖建, 林奇英, 等. 榆黄蘑中一种抗病毒蛋白的纯化及其抗TMV和HBV的活性[J]. 中国病毒学, 2002, (4): 55-58. [68] 陈宁, 吴祖建, 林奇英, 等. 灰树花中一种抗烟草花叶病毒的蛋白质的纯化及其性质[J]. 生物化学与生物物理进展, 2004, 3: 283-286. [69] Kobayashi N, Hiramatsu A, Akatsuka T. Purification and chemical properties of an inhibitor of plant virus infection from fruiting bodies of lentinus edodes[J]. Agricultural and Biological Chemistry, 2014, 51(3): 883-890. [70] 仇月, 王开运, 姜莉莉, 等. 灵芝多糖及香菇多糖对番茄黄化曲叶病毒病的防治效果[J]. 蔬菜, 2021(6): 52-56. [71] 游堂贵, 段艳茹, 张燕, 等. 4种病毒抑制剂对昭通烟草番茄斑萎病毒病和马铃薯Y病毒病的防治效果[J]. 中国农学通报, 2021, 37(36): 135-141. [72] Wang J, Yu G H, Li Y H, et al. Inhibitory effects of sulfated lentinan with different degree of sulfation against tobacco mosaic virus (TMV) in tobacco seedlings[J]. Pesticide Biochemistry and Physiology, 2015, 122: 38-43. [73] 胡叠, 唐前君, 罗坤, 等. 姬松茸粗多糖防治烟草花叶病毒病[J]. 热带作物学报, 2023, 44(4): 790-798. [74] 张鑫, 段军娜, 翟枫, 等. 云芝葡聚糖对烟草马铃薯Y病毒的抗性研究[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2): 191-197. [75] 付鸣佳, 林健清, 吴祖健, 等. 杏鲍菇抗烟草花叶病毒蛋白的筛选[J]. 微生物学报, 2003(1): 29-34. [76] Zhao L, Hao X G, Wu Y F. Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV)[J]. International Journal of Biological Macromolecules, 2015, 75: 474-478. [77] 田华, 陈光勇, 董瑜, 等. 毁灭炭疽菌诱抗蛋白的分离纯化及对烟草抗病促生作用[J]. 中国烟草科学, 2016, 37(4): 68-73. [78] 霍瑞, 薛守聪, 任加庆, 等. 疫霉葡聚糖激发子Gep1诱导烟草对烟草花叶病毒的抗性研究[J]. 中国烟草科学, 2016, 37(2): 1-5. [79] Yun B S, Yoo I D, Kim H Y, et al. Peptaivirins A and B, two new antiviral peptaibols against TMV infection[J]. Tetrahedron Letters, 2000, 41(9): 1429-1431. [80] Luo Y, Zhang D D, Dong X W, et al. Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus[J]. FEMS Microbiology Letters, 2010, 313(2): 120-126. [81] Tan Q W, Fang P H, Ni J C, et al. Metabolites produced by an endophytic Phomopsis sp. and their anti-TMV activity[J]. Molecules, 2017, 22(12): 2073-2082. [82] Tan Q W, Gao F L, Wang F R, et al. Anti-TMV activity of malformin A1, a cyclic penta-peptide produced by an endophytic fungus Aspergillus tubingensis FJBJ11[J]. International Journal of Molecular Sciences, 2015, 16(3): 5750-5761. [83] Yuan L, Huang W Z, Zhou K, et al. Butyrolactones derivatives from the fermentation products of a plant entophytic fungus Penicillium oxalicum[J]. Natural Product Research, 2015, 29(20): 1914-1919. [84] Ye Y Q, Xia C F, Yang J X. Butyrolactones derivatives from the fermentation products of an endophytic fungus Aspergillus versicolor[J]. Bulletin of the Korean Chemical Society, 2014, 35(10): 3059-3062. [85] 张楠, 潘忠成, 李皓瑜, 等.宁南霉素在植物病害上的应用[J]. 四川农业科技, 2023(5): 47-50. [86] Wu Z L, Huang M, Jiang J M, et al. Ningnanmycin activates defense systems against potato virus Y in Nicotiana benthamiana[J]. Journal of Agricultural and Food Chemistry, 2024, 72(48): 26633-26643. [87] 刘翠君, 石丽桥, 王开梅. 微生物来源的抗植物病毒活性物质研究进展[J]. 生物资源, 2019, 41(5): 381-389. [88] 朱春玉, 吴元华, 王春梅, 等. 嘧肽霉素对烟草花叶病毒抑制作用研究[J]. 植物保护, 2005, 31(4): 53-55. [89] 周涛. 抗病毒链霉菌鉴定、代谢产物分离及其抗TMV、 PVY作用机制研究[D]. 沈阳农业大学, 2022. [90] 朱宏建, 周倩, 李有志, 等. 链霉菌HNS2-2代谢产物对TMV的抑制作用及活性成分分析[J]. 中国生物防治学报, 2011, 27(4): 515-519. [91] 宋普球, 魏玉玲, 庄名扬, 等. 核苷N9705的抗病毒、抗菌杀虫活性研究[J]. 中国病毒学, 2000(S1): 183-186. [92] 冯振群, 卢清. 新型生物杀菌剂新奥霉素防治烟草花叶病毒病的田间药效[J]. 现代农药, 2011, 10(4): 50-52. [93] Chen J G, Liu H, Xia Z H, et al. Purification and structural analysis of the effective anti-TMV compound ε-Poly-l-lysine produced by Streptomyces ahygroscopicus[J]. Molecules, 2019, 24(6): 1156-1166. [94] Liu H, Zhao X X, Yu M, et al. Transcriptomic and functional analyses indicate novel anti-viral mode of actions on tobacco mosaic virus of a microbial natural product ε-Poly-l-lysine[J]. Journal of Agricultural and Food Chemistry, 2021, 69(7): 2076-2086. [95] Zhang G Q, Feng J T, Han L R, et al. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01[J]. International Journal of Biological Macromolecules, 2016, 88: 572-577. [96] 田兆丰, 刘霆, 吴慧玲, 等. 小链霉菌Yn168抗病毒活性组分的分离及其稳定性研究[J]. 华北农学报, 2015, 30(2): 124-127. [97] 田兆丰, 刘伟成, 刘霆, 等. 小链霉菌Yn168发酵产物抗植物病毒活性的研究[J]. 中国生物防治学报, 2011, 27(4): 569-572. [98] 张煜琦, 刘勇, 陈应凤, 等. 沼泽红假单胞菌PSB-06菌剂对番茄褪绿病的防效及其作用机制[J]. 植物保护学报, 2021, 48(6): 1496-1507. [99] 符伟, 刘勇, 张德咏, 等. 2.0亿CFU/mL嗜硫小红卵菌HNI-1悬浮剂研发与应用[J]. 中国生物防治学报, 2020, 36(6): 866-868. [100] Yoshioka Y, Ichikawa H, Naznin H A, et al. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice[J]. Pest Management Science, 2012, 68(1): 60-66. [101] Elsharkawy M M, Shimizu M, Takahashi H, et al. Induction of systemic resistance against cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1[J]. The Plant Pathology Journal, 2013, 29(2): 193-200. [102] 张楠, 潘忠成, 李皓瑜, 等. 宁南霉素在植物病害上的应用[J]. 四川农业科技, 2023(5): 47-50. [103] 张振华, 安娟, 徐希宝. 8%氨基寡糖素·宁南霉素可溶液剂防治番茄病毒病田间药效试验[J]. 黑龙江粮食, 2023, 10: 42-44. [104] 顾春燕, 葛红, 王学军, 等. 绿豆病毒病防治药剂筛选研究[J]. 现代农药, 2019, 18(6): 54-56. [105] 曹建华, 王宜娟, 王永国. 8%宁南霉素水剂防治辣椒病毒病田间药效示范[J]. 蔬菜, 2014, (5): 10-11. [106] 贾建伟. 8%宁南霉素防治烟草病毒病田间试验[J]. 种子世界, 2011, (1): 25. [107] 香菇多糖[J]. 农药科学与管理, 2018, 39(10): 51, 54. [108] 曹旎, 苏家恩, 周彦夷, 等. 烟草番茄斑萎病防治药剂筛选(英文)[J]. Agricultural Science & Technology, 2023, 24(4): 47-52. [109] 赵新保. 0.5%香菇多糖水剂对辣椒病毒病的田间防治初探[J]. 南方农业, 2018, 12(29): 18-19. [110] 王伟伟, 郭志波, 安德荣, 等. 枯草芽孢杆菌W-QX-1碱性蛋白酶的性质及其抗烟草花叶病毒活性初步研究[J]. 西北农业学报, 2008(6): 187-192. [111] 郭丛. 恶臭假单胞菌A3菌株抗TMV的活性小分子物质分离及作用机理研究[D]. 北京: 中国农业科学院, 2011. [112] 黄金光, 李怀方, 宋爱荣. 多孔菌MP-01菌株提取液抑制TMV生物活性研究[J]. 青岛农业大学学报(自然科学版), 2007(1): 19-20. [113] Li X Y, Chen K, Gao D, et al. Binding studies between cytosinpeptidemycin and the superfamily 1 helicase protein of tobacco mosaic virus[J]. RSC Advances, 2018, 8(34): 18952-18958. [114] Ge M, Gong M Y, Jiao Y B, et al. Serratia marcescens-S3 inhibits potato virus Y by activating ubiquitination of molecular chaperone proteins NbHsc70-2 in Nicotiana benthamiana[J]. Microbial Biotechnology, 2021, 15(4): 1178-1188. [115] Chen L J, Peng Q Z, Du X H, et al. A bacterial protein Rhp-PSP inhibits plant viral proliferation through endoribonuclease activity[J]. Journal of Integrative Agriculture, 2024, 23(6): 1967-1978. [116] Alazem M, Lin N S. Roles of plant hormones in the regulation of host-virus interactions[J]. Molecular Plant Pathology, 2015, 16(5): 529-540. [117] Conrath U, Beckers G J M, Flors V et al. Priming: getting ready for battle[J]. Molecular Plant-microbe Interactions, 2006, 19(10): 1062-1071. [118] Ton J, Jakab G, Toquin V, et al. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis[J]. Plant Cell, 2005, 17(3): 987-999. [119] Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486. [120] Arif I, Batool M, Schenk M P. Plant microbiome engineering: expected benefits for improved crop growth and resilience[J]. Trends in Biotechnology, 2020, 38(12): 1385-1396. [121] Berendsen R L, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal, 2018, 12(6): 1496-1507. [122] Santoyo G. How plants recruit their microbiome? new insights into beneficial interactions[J]. Journal of Advanced Research, 2022, 40: 45-58. [123] Liu H, Jiang J, An M N, et al. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community[J]. Frontiers in Microbiology, 2022, 13: 840318. [124] Guo Q, Li Y L, Lou Y, et al. Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease[J]. Applied Soil Ecology, 2019, 137: 154-166. [125] Nishiyama M, Shiomi Y, Suzuki S, et al. Suppression of growth of Ralstonia solanacearum, tomato bacterial wilt agent, on/in tomato seedlings cultivated in a suppressive soil[J]. Soil Science & Plant Nutrition, 1999, 45(1): 79-87. [126] Wang F Y, Zhang H Q, Liu H W, et al. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations[J]. Microbiome, 2024, 12(1): 200-219. [127] 熊盈盈, 莫祯妮, 邱树毅, 等. 未培养环境微生物培养方法的研究进展[J]. 微生物学通报, 2021, 48(5): 1765-1779. [128] 李祎, 郑伟, 郑天凌. 海洋微生物多样性及其分子生态学研究进展[J]. 微生物学通报, 2013, 40(4): 655-668. [129] 龙寒, 向伟, 庄铁城, 等. 红树林区微生物资源[J]. 生态学杂志, 2005(6): 696-702. [130] Xiang S Y, Wang J, Wang X Y, et al. A chitosan-coated lentinan-loaded calcium alginate hydrogel induces broad-spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin-like (CML) protein 3[J]. Plant Cell and Environment, 2023, 46(11): 3592-3610. |
| [1] | 李翰扬, 党英侨, 曹亮明, 王小艺. 美国白蛾在特拉华州的取食偏好性及天敌招引试验初报[J]. 中国生物防治学报, 2025, 41(5): 998-1007. |
| [2] | 王志远, 金梦军, 冯中红, 杨成德, 施玉安. 防治玉米茎腐病的枯草芽胞杆菌262XY2′颗粒剂的研制[J]. 中国生物防治学报, 2025, 41(5): 1133-1140. |
| [3] | 白真旭, 计天岑, 陈路生, 张炜康, 曹雨蓉, 朱彩华, 丁楚, 陈勇, 陆铭昌, 王文利, 陈捷. 木霉活性素复合制剂在水稻病虫害绿色防控中的应用[J]. 中国生物防治学报, 2025, 41(5): 1166-1178. |
| [4] | 尹顺利, 毛俊, 王洁琳, 冯臣成, 丁月, 苏源, 白亭亭. 香蕉枯萎病生防真菌的筛选鉴定及其防治效果评价[J]. 中国生物防治学报, 2025, 41(5): 1188-1199. |
| [5] | 韩舜达, 陈俊杰, 陈万斌, 张茂森, 张礼生. 草原毛虫的生物防治资源和应用现状[J]. 中国生物防治学报, 2025, 41(5): 1256-1262. |
| [6] | 陈飞飞, 徐诗怡, 孔佳慧, 闵子权, 王亚会, 潘月敏. 植物有益微生物及其在病害中的生防机制研究进展[J]. 中国生物防治学报, 2025, 41(5): 1263-1275. |
| [7] | 宋柳筱, 徐维红, 许静杨, 从玉秋, 贲海燕, 李冰, 吴惠惠, 邹德玉. 蠋蝽昆虫源人工饲料的优化与评价[J]. 中国生物防治学报, 2025, 41(4): 769-779. |
| [8] | 徐文, 谢夏, 李盼, 董迁迁, 孙润红, 张洁, 夏明聪, 武超, 杨丽荣. 贝莱斯芽胞杆菌YB-1465生防特性分析及对小麦茎基腐病的生防作用[J]. 中国生物防治学报, 2025, 41(4): 877-886. |
| [9] | 吴梦菁, 黄鹏, 张杰, 郑璐平, 余德亿, 林胜, 吴祖建, 姚锦爱. 贝莱斯芽孢杆菌BV-3的鉴定及其对玉米小斑病的防效[J]. 中国生物防治学报, 2025, 41(4): 887-894. |
| [10] | 张驰, 金秉锟, 栗静雯, 都业娟, 黄家风, 张学坤, 刘政. 棉花僵铃病拮抗菌的筛选及其防治效果评价[J]. 中国生物防治学报, 2025, 41(4): 895-905. |
| [11] | 范腕腕, 王振宇, 张海燕, 崔小伟, 冯兰兰, 高蒙. 花生白绢病拮抗细菌的分离鉴定及其生防作用研究[J]. 中国生物防治学报, 2025, 41(4): 906-915. |
| [12] | 孙松, 韩慧敏, 高玉平, 刘春菊, 刘涛, 台金, 王玮玉, 王川, 范增博, 张晓阳, 韩超. 解淀粉芽胞杆菌CY3的分离鉴定、发酵条件筛选及其对烟草镰刀菌根腐病的防治效果评价[J]. 中国生物防治学报, 2025, 41(4): 916-926. |
| [13] | 郭健杰, 易晗, 唐家昊, 刘颜玉, 韦金妮, 杨咖儿, 张红岩, 申乃坤, 陈伯昌. 烟草黑胫病生防菌的筛选、鉴定及其防病促生作用[J]. 中国生物防治学报, 2025, 41(4): 927-938. |
| [14] | 易冬银, 袁善奎, 毕扬, 马春英. 油菜菌核病生防细菌ACQ-03的分离鉴定及其活性研究[J]. 中国生物防治学报, 2025, 41(4): 939-948. |
| [15] | 肖欧丽, 王佳乐, 陈捷胤, 戴小枫, 孔志强. 根及根茎类中药材根腐病生物防治研究进展[J]. 中国生物防治学报, 2025, 41(3): 511-519. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 《中国生物防治学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持:support@magtech.com.cn