[1] 夏善勇, 牛志敏, 李庆全, 等. 马铃薯疮痂病菌及防控手段研究进展[J]. 中国瓜菜, 2022, 35: 12-17 [2] 赵伟全. 中国马铃薯疮痂病菌的鉴定及其致病相关基因nec1的克隆和表达[D]. 保定: 河北农业大学, 2005. [3] 夏善勇, 盛万民. 我国马铃薯疮痂病及其防治研究进展[J]. 植物保护, 2022, 48: 7-16. [4] Bouchek K, Gardan L, Normand P, et al. DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50: 91-99. [5] Rosemary L, Dawn R D, Bignell S M, et al. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces[J]. Antonie Van Leeuwenhoek, 2008, 94: 3-10. [6] Kirk W. Introduction to 2013 symposium on bacterial diseases of potatoes[J]. American Journal of Potato Research, 2015, 92: 215-217. [7] 张萌, 赵伟全, 于秀梅. 中国马铃薯疮痂病病原菌16S rDNA的遗传多样性分析[J]. 中国农业科学, 2009, 42: 499-504. [8] 信净净, 于秀梅, 赵伟全, 等. 马铃薯疮痂病新致病种Streptomyces galilaeus致病毒素组分分析[J]. 中国农业科学, 2010, 43: 3742-3749. [9] Sparrow L A, Rettke M, Corkrey S R, et al. Eight years of annual monitoring of DNA of soil-borne potato pathogens in farm soils in south eastern Australia[J]. Australasian Plant Pathology, 2015, 44: 191-203. [10] 黄勋, 刘霞, 邓琳梅, 等. 马铃薯疮痂病研究进展[J]. 植物病理学报, 2024, 15: 1-9. [11] Sylvain L, Anne-marie S, Bcarole B, et al. Genetic and physiological determinants of Streptomyces scabies pathogenicity[J]. Molecular Plant Pathology, 2009, 10: 579-585. [12] Kers J A, Cameron K D, Joshi M V, et al. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species[J]. Molecular Microbiology, 2005, 55: 1025-33. [13] Shelley J, David D, Kathleen H, et al. Germplasm Release: Three tetraploid potato clones with resistance to common scab[J]. Agriculture Week, 2018, 95: 178-182. [14] Mohamed H, Kamal A, Mahmoud R, et al. Chemical control of potato common scab disease under field conditions[J]. Archives of Phytopathology and Plant Protection, 2014, 47: 1-7. [15] 谢春霞, 郝大海, 段晓艳, 等. 洱海流域坝区马铃薯绿色高效栽培技术[J]. 中国马铃薯, 2023, 32: 436-439. [16] 刘齐栋, 陈焕丽, 张晓静, 等. 5种药剂处理对马铃薯疮痂病防治效果[C]//马铃薯产业与绿色发展. 中国作物学会马铃薯专业委员会, 2021: 459-464. [17] Pu J, Zhang Z H, Zhang H J, et al. Efficacy of bactericides against potato common scab caused by Streptomyces in Yunnan, China[J]. American Journal of Potato Research, 2022, 99: 326-335. [18] 席春艳, 张彤彤, 吕和平, 等. 不同杀菌剂在马铃薯原原种繁育中的应用效果[J]. 中国植保导刊, 2024, 44: 69-72. [19] Zhang X Y, Li C, Hao J J, et al. A novel streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus[J]. Plant Disease, 2020, 104: 1986-1993. [20] Amelia M M, Roel Alejandro C L, et al. Biological control of streptomyces species causing common scabs in potato tubers in the Yaqui valley, Mexico[J]. Horticulturae, 2024, 10: 865-878. [21] Riseh R S, Vatankhah M, Hassanisaadi M, et al. Unveiling the role of hydrolytic enzymes from soil biocontrol bacteria in sustainable phytopathogen management[J]. Frontiers in Bioscience-Landmark, 2024, 29: 105. [22] Han J S, Cheng J H, Yoon T M, et al. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua[J]. Journal Of Applied Microbiology, 2005, 99: 213-221. [23] Narendra S, Chaudhari S M. Management of black scurf (Rhizoctonia solani) and common scab (Streptomyces scabies) of potato through eco-friendly components[J]. Indian Phytopathology, 2012, 65: 378-381 [24] Léger G, Novinscak A, Biessy A, et al. In tuber biocontrol of potato late blight by a collection of henazine-carboxylic acid-producing Pseudomonas spp.[J]. Microorganisms, 2021, 9: 2025. [25] Jiang W Y, Liu J X, He Y, et al. Biological control ability and antifungal activities of Bacillus velezensis Bv S3 against Fusarium oxysporum that causes rice seedling blight[J]. Agronomy, 2024, 14: 167. [26] 张雨雨. 马铃薯疮痂病的生物防控及其机理研究[D]. 芜湖: 安徽工程大学, 2024. [27] Tao H, Wang S S, Li X Y, et al. Biological control of potato common scab and growth promotion of potato by Bacillus velezensis Y6[J]. Frontiers in Microbiology, 2023, 14: 1-14 [28] Meng Q X, Hanson L, Douches D, et al. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens Bac03 and other biomaterials[J]. Biological Control, 2013, 67: 373-379. [29] Zhou Y J, Li Q, Peng Z, et al. Biocontrol effect of Bacillus subtilis YPS-32 on potato common scab and its complete genome sequence analysis[J]. Journal Of Agricultural and Food Chemistry, 2022, 70: 5339-5348. [30] 周健平. 一株拮抗多种水稻病原菌的生防菌的筛选鉴定及其特性研究[D]. 南宁: 广西大学, 2022. [31] 黄元桐, 崔杰. 革兰氏染色三步法与质量控制[J]. 微生物学报, 1996, 36: 76-79. [32] Buchanan R E, Gibbons N E. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984, 12. [33] 王群, 向瑶, 赵茂吉, 等. 8种快速制备细菌基因组DNA方法的效果评价[J]. 现代预防医学, 2017, 44: 3005-3009. [34] Freitag T E, Prosser J I. Comparison of PCR primer-based strategies for characterization of ammonia oxidizer communities in environmental samples[J]. FEMS Microbiology Ecology, 2006, 56: 482-493. [35] 管利, 苏洁文, 彭晨, 等. 对黄瓜专化型枯萎病拮抗菌株的筛选与鉴定[J]. 山西农业大学学报(自然科学版), 2025, 45(2): 60-70. [36] Zheng L L, Zhang J P, Wu X, et al. A novel biocontrol strain Pantoea jilinensis D25 for effective biocontrol of tomato gray mold (causative agent Botrytis cinerea)[J]. Biological Control, 2021, 164: 104776. [37] 于雅琼, 陈红艳, 李平兰, 等. 不同生境中芽胞杆菌的分离鉴定及药敏性检测[J]. 食品科学, 2007, 28: 324-330. [38] 吴际, 朱晓峰, 王媛媛, 等. 生防细菌Sneb2010的鉴定及其对甜瓜枯萎病的防治效果研究[J]. 中国生物防治学报, 2024, 40: 1331-1346. [39] Dhaver P, Pletschke B, Sithole B, et al. Measurement of cellulase and xylanase activities in Trichoderma reesei[J]. Methods in Molecular Biology, 2021,12: 17791. [40] 李雪艳, 张涛, 杨红梅, 等. 棉花黄萎病拮抗细菌胞外酶检测及其酶活测定[J]. 新疆农业科学, 2018, 55: 1663-1673. [41] Shakeel M, Rais A, Hassan M N, et al. root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties [J]. Frontiers in Microbiology, 2015, 6: 1286. [42] Cui L X, Yang C D, Wang Y Y, et al. Potential of an endophytic bacteria Bacillus amyloliquefaciens 3-5 as biocontrol agent against potato scab[J]. Microbial Pathogenesis, 2021, 163: 105382. [43] 余梦博, 谢志恒, 黎家明, 等. 3株芽胞杆菌抗菌肽抑菌特性与抑菌谱研究[J]. 安徽农业科学, 2024, 52: 88-91, 126. [44] Mora I, Cabrefiga J, Montesinos E. Antimicrobial peptide genes in Bacillus strains from plant environments[J]. International Microbiology, 2011, 14: 213-223. [45] Yang L R, Quan X, Xue B G, et al. Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var.[J]. Biological Control, 2015, 85: 52-58. [45] Pruthvir A J, Naik M K, Ekabote S D, et al. Evaluation of Lactiplantibacillus argentoratensis MYSJK8 from jackfruit for its multifarious antibacterial, probiotic, plant growth promoting and bio-control attributes[J]. Journal of Crop Health, 2024, 76: 1627-1642. [46] 卢肖平. 马铃薯主粮化战略的意义、瓶颈与政策建议[J]. 华中农业大学学报(社会科学版), 2015, 3: 1-7. [47] Arslan S, Zakia L, Zhu J, et al. Biological control of potato common scab with rare isatropolone C compound produced by plant growth promoting Streptomyces A1RT[J]. Frontiers in Microbiology, 2018, 9: 1126. [48] 姜超, 董禹含, 孟利强, 等. 镰孢菌引发的大豆根腐病及其生物防治研究进展[J]. 大豆科学, 2024, 43: 656-662. [49] 袁伟涛, 张婷, 马翠柳, 等. 两株耐热有机质降解芽胞杆菌分离鉴定[J]. 饲料工业, 2024, 45: 17. [50] Zhang S, Lou T, Wu S G, et al. Bacillus velezensis GX1 and its potential for the control of lily bulb rot[J]. Biological Control, 2024, 198: 105616. [51] Liu Q Y, Zhao W Y, Li W Y, et al. Lipopeptides from Bacillus velezensis ZLP-101 and their mode of action against bean aphids Acyrthosiphon pisum Harris[J]. BMC Microbiology, 2024, 24: 231. [52] Li Y J, Chen S B, Yu Z H, et al. A novel Bacillus velezensis for efficient degradation of zearalenone[J]. Foods, 2024, 13: 530. [53] Qi X Z, Luo F, Zhang Y L, et al. Exploring the protective role of Bacillus velezensis Bv1704-y in zebrafish health and disease resistance against Aeromonas hydrophila infection[J]. Fish and Shellfish Immunology, 2024, 152: 109789. [54] Tao H, Li X Y, Huo H Z, et al. Bacillus velezensis Y6, a potential and efficient biocontrol agent in control of rice sheath blight caused by Rhizoctonia solani[J]. Microorganisms, 2024, 12: 1694. [55] Zhong J, Wu X, Guo R, et al. Biocontrol potential of Bacillus velezensis HG-8-2 against postharvest anthracnose on chili pepper caused by Colletotrichum scovillei [J]. Food Microbiology, 2024, 124: 10613. [56] Wang Y T, Zhang N, Bi X Y, et al. Biocontrol potential of Bacillus velezensis SEC-024A against southern blight of industrial hemp[J]. Industrial Crops Products, 2024, 222: 119767. [57] Li H L, Zhao S S, Zhang X Y, et al. Inoculation of Bacillus velezensis Bv-116 and its bio-organic fertilizer serve as an environmental friendly biocontrol strategy against cucumber Fusarium wilt[J]. Microbiology Resource Announcements, 2024, 15: 1467265-1467265. [58] Sun Y, Yang N, Li S, et al. Mechanism of oxalate decarboxylase Oxd-S12 from Bacillus velezensis BvZ45-1 in defense against cotton Verticillium wilt[J]. Journal of Experimental Botany, 2024, 75: 3500-3520. [59] Tang T, Wang F F, Huang H Y, et al. Antipathogenic activities of volatile organic compounds produced by Bacillus velezensis LT1 against Sclerotium rolfsii LC1, the pathogen of southern blight in Coptis chinensis[J]. Journal of Agricultural and Food Chemistry, 2024, 72: 10282-10294. [60] Liu F, Gao R Q, Zhang F, et al. Postharvest biocontrol of green mold (Penicillium digitatum) in citrus by Bacillus velezensis strain S161 and its mode of action[J]. Biological Control, 2023, 187: 105392. [61] Gupta K, Dubey N K, Singh S P, et al. Plant growth-promoting Rhizobacteria (PGPR): Current and future prospects for crop improvement[J]. Springer Nature Link, 2021, 11: 203-226. [62] Liang X Y, Ishfaq S, Liu Y, et al. Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties[J]. Microbiological Research, 2024, 285: 127745. [63] Wu G W, Liu Y P, Xu Y, et al. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways[J]. Molecular Plant-Microbe Interactions, 2018, 31: 560-567. |