[1] Jacobi W R, Main C E, Powell N T. Influence of temperature and rainfall on the development of tobacco black shank[J]. Phytopathology, 1983, 73(2):139-143. [2] Csinos A S, Fortnum B A, Powell N T, et al. Resistance of tobacco cultivars and candidate cultivars to Phytophthora parasitica var. nicotianae[J]. Tobacco Science, 1984, 28:153-155. [3] Csinos A S, Minton N A. Control of tobacco black shank with combinations of systemic fungicides and nematicides or fumigants[J]. Plant Disease, 1983, 67(2):204-207. [4] Shew H D, Lucas G B. Compendium of Tobacco Diseases[M]. Saint Paul, Minnesota:American Phytopathological Society Press, 1991, 17-20. [5] Zhang X G, Sun W X, Guo L, et al. Genetic and pathogenic variation among tobacco black shank strains of Phytophthora parasitica var. nicotianae from the main tobacco growing in Chin[J]. Journal of Phytopathology, 2003, 151(5):259-266. [6] Wang H C, Chen X J, Cai L T, et al. Race distribution and distribution of sensitivities to mefenoxam among isolates of Phytophthora parasitica var. nicotianae in Guizhou province of China[J]. Crop Protection, 2013, 52:136-140. [7] Chen X H, Koumoutsi A, Scholz Romv, et al. More than anticipated -production of antibiotics and other secondary metabolities by Bacillus amyloliquefaciens FZB42[J]. Journal of Molecular Microbiology and Biotechnology, 2009, 16:14-24. [8] Koumoutsi A, Chen X H, Vater J, et al. DegU and YczE positively regulate the synthesis of Bacillomycin D by Bacillus amyloliquefaciens strain FZB42[J]. Applied and Environmental Microbiology, 2007, 73:6953-6964. [9] Bochner B R. New technologies to assess genotype-phenotype relationships[J]. Nature Reviews Genetics, 2003, 4:309-314. [10] Bochner B R, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function[J]. Genome Research, 2001, 11:1246-1255. [11] Wang H C, Huang Y F, Xia H Q, et al. Phenotypic analysis of Alternaria alternata, the causal agent of tobacco brown spot[J]. Plant Pathology Journal, 2015, 14(2):79-85. [12] 王茂胜, 汪汉成, 黄艳飞, 等. 烟草黑胫病菌的表型组学分析[J]. 微生物学报, 2015, 55(10):1356-1363. [13] Li W, Lu C D. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2007, 189(15):5413-5420. [14] Wang H C, Huang Y F, Xia H Q, et al. Phenotypic analysis of Alternaria alternata, the causal agent of tobacco brown spot[J]. Plant Pathology Journal, 2015, 14(2):79-85. [15] 汪汉成, 黄艳飞, 龙明锦, 等. 烟草青枯病菌与其拮抗菌解淀粉芽胞杆菌的代谢表型差异分析[J]. 植物保护学报, 2017, 44(5):753-762. [16] Shahidi B G H, Barkhordar B, Pakgohar N, et al. Biological control of Phytophthora drechsleri tucker, the causal agent of pistachio gummosis, under greenhouse conditions by use of actinomycetes[J]. Plant Pathology Journal, 2006, 5:20-23. [17] Oku S, Nishiyama S, Takao Y. Selective isolation of bacteria from soil with hydrophobic materials[J]. World Journal of Microbiology and Biotechnology, 2011, 27:1941-1945. [18] Wang H C, Li W H, Chen Q Y, et al. A rapid microbioassay for discovery of antagonistic bacteria for Phytophthora parasitica var. nicotianae[J]. Phytopathology, 2012, 102:267-271. [19] Sun H Y, Wang H C, Stammler G, et al. Baseline sensitivity of populations of Phytophthora capsici from China to three carboxylic acid amide (CAA) fungicides and sequence analysis of cholinephosphotranferases from a CAA-sensitive isolate and CAA-resistant laboratory mutants[J]. Journal of Phytopathology, 2010, 158(4):244-252. [20] Mccorkle K, Lewis R, Shew D. Resistance to Phytophthora nicotianae in tobacco breeding lines derived from variety beinhart 1000[J]. Plant Disease, 2013, 97(2):252-258. [21] Haesaert G, Vossen J H, Custers R, et al. Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions[J]. Crop Protection, 2015, 77:163-175. [22] Wu K, Yuan S F, Xun G H, et al. Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index[J]. European Journal of Plant Pathology, 2015, 141(4):667-677. [23] Mols M, de Been M, Zwietering M H, et al. Metabolic capacity of Bacillus strains ATCC 14579 and ATCC 10987 interlinked with comparatice genomics[J]. Environmental Microbiology, 2007, 9(12):2933-2944. [24] Oh Y K, Palsson B O, Park S M, et al. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data[J]. The Journal of Biological Chemistry, 2007, 282:28791-28799. |